UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Computational optimization of associative learning experiments

Melinscak, F; Bach, DR; (2020) Computational optimization of associative learning experiments. PLOS Computational Biology , 16 (1) , Article e1007593. 10.1371/journal.pcbi.1007593. Green open access

[thumbnail of journal.pcbi.1007593.pdf]
Preview
Text
journal.pcbi.1007593.pdf - Published Version

Download (2MB) | Preview

Abstract

With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here.

Type: Article
Title: Computational optimization of associative learning experiments
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pcbi.1007593
Publisher version: http://dx.doi.org/10.1371/journal.pcbi.1007593
Language: English
Additional information: © 2020 Melinscak, Bach. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience
URI: https://discovery.ucl.ac.uk/id/eprint/10089996
Downloads since deposit
58Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item