Limanowski, J;
Friston, K;
(2019)
Attentional Modulation of Vision Versus Proprioception During Action.
Cerebral Cortex
10.1093/cercor/bhz192.
(In press).
Preview |
Text
bhz192.pdf - Published Version Download (687kB) | Preview |
Abstract
To control our actions efficiently, our brain represents our body based on a combination of visual and proprioceptive cues, weighted according to how (un)reliable—how precise—each respective modality is in a given context. However, perceptual experiments in other modalities suggest that the weights assigned to sensory cues are also modulated “top-down” by attention. Here, we asked whether during action, attention can likewise modulate the weights (i.e., precision) assigned to visual versus proprioceptive information about body position. Participants controlled a virtual hand (VH) via a data glove, matching either the VH or their (unseen) real hand (RH) movements to a target, and thus adopting a “visual” or “proprioceptive” attentional set, under varying levels of visuo-proprioceptive congruence and visibility. Functional magnetic resonance imaging (fMRI) revealed increased activation of the multisensory superior parietal lobe (SPL) during the VH task and increased activation of the secondary somatosensory cortex (S2) during the RH task. Dynamic causal modeling (DCM) showed that these activity changes were the result of selective, diametrical gain modulations in the primary visual cortex (V1) and the S2. These results suggest that endogenous attention can balance the gain of visual versus proprioceptive brain areas, thus contextualizing their inf luence on multisensory areas representing the body for action.
Type: | Article |
---|---|
Title: | Attentional Modulation of Vision Versus Proprioception During Action |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1093/cercor/bhz192 |
Publisher version: | https://doi.org/10.1093/cercor/bhz192 |
Language: | English |
Additional information: | © The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords: | action, attention, dynamic causal modeling, sensorimotor integration |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience |
URI: | https://discovery.ucl.ac.uk/id/eprint/10085922 |
Archive Staff Only
View Item |