Timmers, T;
Ossenkoppele, R;
Wolters, EE;
Verfaillie, SCJ;
Visser, D;
Golla, SSV;
Barkhof, F;
... van Berckel, BNM; + view all
(2019)
Associations between quantitative [18F]flortaucipir tau PET and atrophy across the Alzheimer's disease spectrum.
Alzheimer's Research & Therapy
, 11
, Article 60. 10.1186/s13195-019-0510-3.
Preview |
Text
Barkhof correct s13195-019-0510-3.pdf - Published Version Download (2MB) | Preview |
Abstract
Background Neuropathological studies have linked tau aggregates to neuronal loss. To describe the spatial distribution of neurofibrillary tangle pathology in post-mortem tissue, Braak staging has been used. The aim of this study was to examine in vivo associations between tau pathology, quantified with [18F]flortaucipir PET in regions corresponding to Braak stages, and atrophy across the Alzheimer’s disease (AD) spectrum. Methods We included 100 subjects, including 58 amyloid-β positive patients with mild cognitive impairment (MCI, n = 6) or AD dementia (n = 52) and 42 controls with subjective cognitive decline (36% amyloid-β positive). All subjects underwent a dynamic [18F]flortaucipir PET to generate non-displaceable binding potential (BPND) maps. We extracted average [18F]flortaucipir BPND entorhinal, Braak III–IV (limbic) and Braak V–VI (neocortical) regions of interest (ROIs). T1-weighted MRI was used to assess gray matter (GM) volumes. We performed linear regression analyses using [18F]flortaucipir BPND ROIs as independent and GM density (ROI or voxelwise) as dependent variable. Results In MCI/AD subjects (age [mean ± SD] 65 ± 8 years, MMSE 23 ± 4), [18F]flortaucipir BPND was higher than in controls (age 65 ± 8, MMSE 29 ± 1) across all ROIs (entorhinal 0.06 ± 0.21 vs 0.46 ± 0.25 p < 0.001, Braak III–IV 0.11 ± 0.10 vs 0.46 ± 0.26, p < 0.001, Braak V–VI 0.07 ± 0.07 vs 0.38 ± 0.29, p < 0.001). In MCI/AD, greater [18F]flortaucipir BPND in entorhinal cortex was associated with lower GM density in medial temporal lobe (β − 0.40, p < 0.001). Greater [18F]flortaucipir BPND in ROI Braak III–IV and Braak V–VI was associated with smaller GM density in lateral and inferior temporal, parietal, occipital, and frontal lobes (range standardized βs − 0.30 to − 0.55, p < 0.01), but not in medial temporal lobe (β − 0.22, p 0.07). [18F]Flortaucipir BPND in ROI Braak I–II was not associated with GM density loss anywhere. When quantifying [18F]flortaucipir BPND across brain lobes, we observed both local and distant associations with GM atrophy. In controls, there were no significant associations between [18F]flortaucipir BPND and GM density (standardized βs ranging from − 0.24 to 0.02, all p > 0.05). Conclusions In MCI/AD patients, [18F]flortaucipir binding in entorhinal, limbic, and neocortical regions was associated with cortical atrophy.
Type: | Article |
---|---|
Title: | Associations between quantitative [18F]flortaucipir tau PET and atrophy across the Alzheimer's disease spectrum |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1186/s13195-019-0510-3 |
Publisher version: | https://doi.org/10.1186/s13195-019-0510-3 |
Language: | English |
Additional information: | This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
Keywords: | Tau, Atrophy, Alzheimer’s disease, MCI (mild cognitive impairment), MRI, PET |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation |
URI: | https://discovery.ucl.ac.uk/id/eprint/10083863 |
Archive Staff Only
View Item |