Van Der Heijden, G;
Wang, Z;
(2020)
Snap behaviour in the upheaval buckling of subsea pipelines under topographic step imperfection.
Marine Structures
, 69
, Article 102674. 10.1016/j.marstruc.2019.102674.
Preview |
Text
Van Der Heijden_Snap behaviour in the upheaval buckling of subsea pipelines under topographic step imperfection_AAM.pdf - Accepted Version Download (607kB) | Preview |
Abstract
Pipelines exposed to high temperature and high pressure with a topographic step imperfection are susceptible to the phenomenon of upheaval buckling potentially leading to a hazard for the structural integrity of the pipeline. To analyse this problem we derive analytical upheaval buckling solutions and obtain the locations of maximum displacement and maximum axial compressive stress. We also analyse the typical post-buckling behaviour and its dependence on step height, axial soil resistance and wall thickness. The difference in behaviour between a pipeline with step imperfection and one with a symmetric prop imperfection is discussed. Our results show that a pipeline with a step imperfection is more prone to upheaval buckling than a perfect pipeline. For sufficiently small step heights the pipeline may suffer a snap-back instability under decreasing thermal loading, raising the possibility of hysteretic snap behaviour under cyclic thermal loading (for instance caused by periodic start-ups and shut-downs). The snap-back buckling disappears for large enough step height and the minimum critical temperature difference decreases with increasing step height and wall thickness or with decreasing axial soil resistance. The maximum compressive stress decreases with increasing step height and axial soil resistance or with decreasing wall thickness. A pipeline with step imperfection is safer than one with a symmetric prop imperfection.
Type: | Article |
---|---|
Title: | Snap behaviour in the upheaval buckling of subsea pipelines under topographic step imperfection |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.marstruc.2019.102674 |
Publisher version: | https://doi.org/10.1016/j.marstruc.2019.102674 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Subsea pipelines, Upheaval imperfection, Snap buckling |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Civil, Environ and Geomatic Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/10081922 |
Archive Staff Only
![]() |
View Item |