Canfarotta, F;
Lezina, L;
Guerreiro, A;
Czulak, J;
Petukhov, A;
Daks, A;
Smolinska-Kempisty, K;
... Barlev, NA; + view all
(2018)
Specific Drug Delivery to Cancer Cells with Double-Imprinted Nanoparticles against Epidermal Growth Factor Receptor.
Nano Letters
, 18
(8)
pp. 4641-4646.
10.1021/acs.nanolett.7b03206.
Preview |
Text
Poma_AP_Nanoletters_OA.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is over-expressed in many tumors, including almost half of triple-negative breast cancers. The latter belong to a very-aggressive and drug-resistant form of malignancy. Although humanized anti-EGFR antibodies can work efficiently against these cancers both as monotherapy and in combination with genotoxic drugs, instability and high production costs are some of their known drawbacks in clinical use. In addition, the development of antibodies to target membrane proteins is a very challenging task. Accordingly, the main focus of the present work is the design of supramolecular agents for the targeting of membrane proteins in cancer cells and, hence, more-specific drug delivery. These were produced using a novel double-imprinting approach based on the solid-phase method for preparation of molecularly imprinted polymer nanoparticles (nanoMIPs), which were loaded with doxorubicin and targeted toward a linear epitope of EGFR. Additionally, upon binding, doxorubicin-loaded anti-EGFR nanoMIPs elicited cytotoxicity and apoptosis only in those cells that over-expressed EGFR. Thus, this approach can provide a plausible alternative to conventional antibodies and sets up a new paradigm for the therapeutic application of this class of materials against clinically relevant targets. Furthermore, nanoMIPs can promote the development of cell imaging tools against difficult targets such as membrane proteins.
Type: | Article |
---|---|
Title: | Specific Drug Delivery to Cancer Cells with Double-Imprinted Nanoparticles against Epidermal Growth Factor Receptor |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1021/acs.nanolett.7b03206 |
Publisher version: | https://doi.org/10.1021/acs.nanolett.7b03206 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Molecular imprinting, nanoparticles, molecular recognition, membrane receptors, cancer, drug delivery |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute |
URI: | https://discovery.ucl.ac.uk/id/eprint/10076894 |
Archive Staff Only
View Item |