Saoura, M;
Powell, CA;
Kopajtich, R;
Alahmad, A;
Al-Balool, HH;
Albash, B;
Alfadhel, M;
... Minczuk, M; + view all
(2019)
Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3'-end processing.
Human Mutation
, 40
(10)
pp. 1731-1748.
10.1002/humu.23777.
Preview |
Text
Rahman PDFsam_Rahman VOR_Saoura_et_al-2019-Human_Mutation.pdf - Published Version Download (3MB) | Preview |
Abstract
Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of sixteen novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modelled the residues affected by missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of hypertrophic cardiomyopathy and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism This article is protected by copyright. All rights reserved.
Type: | Article |
---|---|
Title: | Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3'-end processing |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/humu.23777 |
Publisher version: | http://doi.org/10.1002/humu.23777 |
Language: | English |
Additional information: | © 2019 The Authors. Human Mutation Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Mitochondria, RNA, RNase Z, cardiomyopathy, mitochondrial disease |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Genetics and Genomic Medicine Dept |
URI: | https://discovery.ucl.ac.uk/id/eprint/10074235 |




Archive Staff Only
![]() |
View Item |