UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Logical Aspects of Probability and Quantum Computation

Zapata Fonseca, Octavio Baltasar; (2019) Logical Aspects of Probability and Quantum Computation. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of thesis.pdf]
Preview
Text
thesis.pdf

Download (354kB) | Preview

Abstract

Most of the work presented in this document can be read as a sequel to previous work of the author and collaborators, which has been published and appears in [DSZ16, DSZ17, ABdSZ17]. In [ABdSZ17], the mathematical description of quantum homomorphisms of graphs and more generally of relational structures, using the language of category theory is given. In particular, we introduced the concept of ‘quantum’ monad. In this thesis we show that the quantum monad fits nicely into the categorical framework of effectus theory, developed by Jacobs et al. [Jac15, CJWW15]. Effectus theory is an emergent field in categorical logic aiming to describe logic and probability, from the point of view of classical and quantum computation. The main contribution in the first part of this document prove that the Kleisli category of the quantum monad on relational structures is an effectus. The second part is rather different. There, distinct facets of the equivalence relation on graphs called cospectrality are described: algebraic, combinatorial and logical relations are presented as sufficient conditions on graphs for having the same spectrum (i.e. being ‘cospectral’). Other equivalence of graphs (called fractional isomorphism) is also related using some ‘game’ comonads from Abramsky et al. [ADW17, Sha17, AS18]. We also describe a sufficient condition for a pair of graphs to be cospectral using the quantum monad: two Kleisli morphisms (going in opposite directions) between them satisfying certain compatibility requirement.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Logical Aspects of Probability and Quantum Computation
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10072562
Downloads since deposit
256Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item