Rimpilaeinen, V;
Koulouri, A;
Lucka, F;
Kaipio, JP;
Wolters, CH;
(2019)
Improved EEG source localization with Bayesian uncertainty modelling of unknown skull conductivity.
NeuroImage
, 188
pp. 252-260.
10.1016/j.neuroimage.2018.11.058.
Preview |
Text
AEM-EEG-NeuroImage-AcceptedManuscript.pdf - Accepted Version Download (4MB) | Preview |
Abstract
Electroencephalography (EEG) source imaging is an ill-posed inverse problem that requires accurate conductivity modelling of the head tissues, especially the skull. Unfortunately, the conductivity values are difficult to determine in vivo. In this paper, we show that the exact knowledge of the skull conductivity is not always necessary when the Bayesian approximation error (BAE) approach is exploited. In BAE, we first postulate a probability distribution for the skull conductivity that describes our (lack of) knowledge on its value, and model the effects of this uncertainty on EEG recordings with the help of an additive error term in the observation model. Before the Bayesian inference, the likelihood is marginalized over this error term. Thus, in the inversion we estimate only our primary unknown, the source distribution. We quantified the improvements in the source localization when the proposed Bayesian modelling was used in the presence of different skull conductivity errors and levels of measurement noise. Based on the results, BAE was able to improve the source localization accuracy, particularly when the unknown (true) skull conductivity was much lower than the expected standard conductivity value. The source locations that gained the highest improvements were shallow and originally exhibited the largest localization errors. In our case study, the benefits of BAE became negligible when the signal-to-noise ratio dropped to 20 dB.
Type: | Article |
---|---|
Title: | Improved EEG source localization with Bayesian uncertainty modelling of unknown skull conductivity |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.neuroimage.2018.11.058 |
Publisher version: | https://doi.org/10.1016/j.neuroimage.2018.11.058 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Science & Technology, Life Sciences & Biomedicine, Neurosciences, Neuroimaging, Radiology, Nuclear Medicine & Medical Imaging, Neurosciences & Neurology, Electroencephalography, Uncertainty modelling, Bayesian inverse problem, Skull conductivity, Source localization, IN-VIVO MEASUREMENT, EIT-BASED METHOD, APPROXIMATION ERRORS, MEG, COMPENSATION, REDUCTION, BRAIN, SCALP |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10072222 |
Archive Staff Only
View Item |