Tang, L;
Wang, L;
Bao, W;
Zhu, S;
Li, D;
Zhao, N;
Liu, C;
(2019)
Functional gradient structural design of customized diabetic insoles.
Journal of the Mechanical Behavior of Biomedical Materials
, 94
pp. 279-287.
10.1016/j.jmbbm.2019.03.003.
Preview |
Text
3235_diabetic insole-Ling Wang.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Diabetic foot is a common and serious complication of diabetes, largely due to sensory neuropathy and excessive mechanical stresses. Studies have shown that reducing the contact pressure can effectively lower the incidence of diabetic foot. A new design method is proposed in this study for optimizing the stress distribution of the contact surfaces between the foot and the insole by applying functional gradient structural properties to the insole. Finite element analysis was employed for studying the contact mechanics, which laid the foundation for modulus readjustment during the optimization process. The moduli of the materials were correlated to the properties of the structural porous units. The customized insoles were manufactured using additive manufacturing technology and put into mechanical test. Results show that the designed insole helps in increasing the foot contact area by approximately 30% and reducing the peak contact pressure by 35%. Hence, the proposed method can be used to design customized insoles, particularly diabetic insoles, by offering better contact mechanics and good potential for reducing the severity of diabetic foot. The methodology is equally applicable to other designs involving optimization of material properties.
Archive Staff Only
View Item |