Wu, G;
Cao, E;
Ellis, P;
Constantinou, A;
Kuhn, S;
Gavriilidis, A;
(2019)
Continuous Flow Aerobic Oxidation of Benzyl Alcohol on Ru/Al2O3 Catalyst in a Flat Membrane Microchannel Reactor: an Experimental and Modelling Study.
Chemical Engineering Science
, 201
pp. 386-396.
10.1016/j.ces.2019.02.015.
Preview |
Text
Gavriilidis_1-s2.0-S0009250919301770-main.pdf - Accepted Version Download (1MB) | Preview |
Abstract
A flat Teflon AF-2400 membrane microchannel reactor was experimentally and theoretically investigated for aerobic oxidation of benzyl alcohol on a 5 wt% Ru/Al2O3 catalyst. The reactor consisted of gas and liquid channels (75 mm (L) × 3 mm (W) × 1 mm (D)), separated by a 0.07 mm thick semipermeable Teflon AF-2400 flat membrane, which allowed continuous supply of oxygen during the reaction and simultaneously avoided direct mixing of gaseous oxygen with organic reactants. A catalyst stability test was first carried out, and the experimental data obtained were used to estimate the kinetics of benzyl alcohol oxidation with a 2D reactor model. Using these kinetics, predictions from the 2D reactor model agreed well with the experimental data obtained at different liquid flow rates and oxygen pressures. The mass transfer and catalytic reaction in the membrane microchannel reactor were then theoretically studied by changing the membrane thickness, the liquid channel depth, and the reaction rate coefficient. Oxygen transverse mass transport in the catalyst bed was found to be the controlling process for the system investigated, and decreasing the liquid channel depth is suggested to improve the oxygen supply and enhance the benzyl alcohol conversion in the membrane reactor.
Type: | Article |
---|---|
Title: | Continuous Flow Aerobic Oxidation of Benzyl Alcohol on Ru/Al2O3 Catalyst in a Flat Membrane Microchannel Reactor: an Experimental and Modelling Study |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.ces.2019.02.015 |
Publisher version: | https://doi.org/10.1016/j.ces.2019.02.015 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Ruthenium catalyst, alcohol aerobic oxidation, Teflon AF-2400 membrane, membrane reactor modelling |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/10069933 |
Archive Staff Only
View Item |