UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

A Sufficient Set of Experimentally Implementable Thermal Operations for Small Systems

Perry, C; Cwiklinski, P; Anders, J; Horodecki, M; Oppenheim, J; (2018) A Sufficient Set of Experimentally Implementable Thermal Operations for Small Systems. Physical Review X , 8 (4) , Article 041049. 10.1103/PhysRevX.8.041049. Green open access

[thumbnail of PhysRevX.8.041049.pdf]
Preview
Text
PhysRevX.8.041049.pdf - Published Version

Download (734kB) | Preview

Abstract

Recent work using tools from quantum information theory has shown that for small systems where quantum effects become prevalent, there is not one thermodynamical second law but many. Derivations of these laws assume that an experimenter has very precise control of the system and heat bath. Here we show that these multitude of laws can be saturated using two very simple operations: changing the energy levels of the system and thermalizing over any two system energy levels. Using these two operations, one can distill the optimal amount of work from a system, as well as perform the reverse formation process. What is more, using only these two operations and one ancilla qubit in a thermal state, one can transform any state into any other state allowable by the second laws. We thus have the result that the second laws hold for fine-grained manipulation of system and bath, but can be achieved using very coarse control. This brings the full array of thermal operations towards a regime accessible by experiment, and establishes the physical relevance of these second laws, potentially opening a new direction of studies.

Type: Article
Title: A Sufficient Set of Experimentally Implementable Thermal Operations for Small Systems
Open access status: An open access version is available from UCL Discovery
DOI: 10.1103/PhysRevX.8.041049
Publisher version: https://doi.org/10.1103/PhysRevX.8.041049
Language: English
Additional information: Copyright © the authors. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Keywords: Interdisciplinary Physics, Quantum Information
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery.ucl.ac.uk/id/eprint/10064857
Downloads since deposit
75Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item