Bootle, J;
Cerulli, A;
Groth, J;
Jakobsen, S;
Maller, M;
(2018)
Arya: Nearly linear-time zero-knowledge proofs for correct program execution.
In: Peyrin, T and Galbraith, S, (eds.)
Advances in Cryptology – ASIACRYPT 2018: 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part I.
(pp. pp. 595-626).
Springer: Cham, Switzerland.
Preview |
Text
ZKRAM-Asiacrypt2018-Final.pdf - Accepted Version Download (723kB) | Preview |
Abstract
There have been tremendous advances in reducing interaction, communication and verification time in zero-knowledge proofs but it remains an important challenge to make the prover efficient. We construct the first zero-knowledge proof of knowledge for the correct execution of a program on public and private inputs where the prover computation is nearly linear time. This saves a polylogarithmic factor in asymptotic performance compared to current state of the art proof systems. We use the TinyRAM model to capture general purpose processor computation. An instance consists of a TinyRAM program and public inputs. The witness consists of additional private inputs to the program. The prover can use our proof system to convince the verifier that the program terminates with the intended answer within given time and memory bounds. Our proof system has perfect completeness, statistical special honest verifier zero-knowledge, and computational knowledge soundness assuming linear-time computable collision-resistant hash functions exist. The main advantage of our new proof system is asymptotically efficient prover computation. The prover’s running time is only a superconstant factor larger than the program’s running time in an apples-to-apples comparison where the prover uses the same TinyRAM model. Our proof system is also efficient on the other performance parameters; the verifier’s running time and the communication are sublinear in the execution time of the program and we only use a log-logarithmic number of rounds.
Type: | Proceedings paper |
---|---|
Title: | Arya: Nearly linear-time zero-knowledge proofs for correct program execution |
ISBN-13: | 978-3-030-03325-5 |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/978-3-030-03326-2_20 |
Publisher version: | https://doi.org/10.1007/978-3-030-03326-2_20 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Zero-knowledge proofs, Succinct arguments of knowledge, TinyRAM, Ideal linear commitments, Post-quantum security |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10063978 |




Archive Staff Only
![]() |
View Item |