UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Role of complement genetic variants in inflammatory diseases by an interactive database and protein structure modelling

Osborne, Amy Jane; (2018) Role of complement genetic variants in inflammatory diseases by an interactive database and protein structure modelling. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of AmyOsborne_PhDthesis_Nov2018_corrected_accepted.pdf]
Preview
Text
AmyOsborne_PhDthesis_Nov2018_corrected_accepted.pdf - Accepted Version

Download (9MB) | Preview

Abstract

The rare diseases atypical haemolytic uraemic syndrome (aHUS) and C3 glomerulopathy (C3G) are associated with dysregulation of complement activation. It is unclear which genes most frequently predispose to aHUS or C3G. Accordingly, a six- centre analysis of 610 rare genetic variants in 13 mostly complement genes from >3500 patients with aHUS and C3G was performed. A new interactive Database of Complement Gene Variants was developed to extract allele frequencies for these 13 genes using the Exome Aggregation Consortium server as the reference genome. For aHUS, significantly more protein-altering rare variation was found in the five genes CFH, CFI, CD46, C3 and DGKE than in ExAC. For C3G, an association was only found for rare variants in C3 and the N-terminal C3b-binding or C-terminal non-surface-associated regions of factor H (FH). FH is the major regulator of C3b and its Tyr402His polymorphism is an age-related macular degeneration risk-factor. To better understand FH complement binding, the solution structures of both allotypes were studied. Starting from known FH short complement regulator domains and glycan structures, small angle X-ray scattering data were fitted using Monte Carlo methods to determine atomistic structures for monomeric FH. The analysis of 29,715 physically realistic but randomised FH conformations resulted in 100 similar best-fit FH structures for each allotype. Two distinct molecular structures resulted; an extended N-terminal domain arrangement with a folded-back C-terminus, or an extended C-terminus and folded-back N-terminus. To clarify FH functional roles in host protection, crystal structures for the FH complexes with C3b and C3dg revealed that the extended N-terminal conformation accounted for C3b fluid phase regulation, the extended C-terminal conformation accounted for C3d binding, and both conformations accounted for bivalent FH binding to the host cell-surface. Finally, statistical analyses indicated that the structural location of rare variants in complement may predict the occurrences of aHUS or C3G.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Role of complement genetic variants in inflammatory diseases by an interactive database and protein structure modelling
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2018. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
URI: https://discovery.ucl.ac.uk/id/eprint/10063566
Downloads since deposit
Loading...
437Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item