de Roever, I;
Bale, G;
Mitra, S;
Meek, J;
Robertson, NJ;
Tachtsidis, I;
(2018)
Investigation of the Pattern of the Hemodynamic Response as Measured by Functional Near-Infrared Spectroscopy (fNIRS) Studies in Newborns, Less Than a Month Old: A Systematic Review.
Frontiers in Human Neuroscience
, 12
, Article 371. 10.3389/fnhum.2018.00371.
Preview |
Text
DeRoever_fnhum-12-00371.pdf - Published Version Download (2MB) | Preview |
Abstract
It has been 20 years since functional near-infrared spectroscopy (fNIRS) was first used to investigate the evoked hemodynamic response to a stimulus in newborns. The hemodynamic response to functional activation is well-established in adults, with an observed increase in concentration change of oxygenated hemoglobin (Δ[HbO2]) and decrease in deoxygenated hemoglobin (Δ[HHb]). However, functional studies in newborns have revealed a mixed response, particularly with Δ[HHb] where an inconsistent change in direction is observed. The reason for this heterogeneity is unknown, with potential explanations arising from differing physiology in the developing brain, or differences in instrumentation or methodology. The aim of this review is to collate the findings from studies that have employed fNIRS to monitor cerebral hemodynamics in term newborn infants aged 1 day−1 month. A total of 46 eligible studies were identified; some studies investigated more than one stimulus type, resulting in a total of 51 reported results. The NIRS parameters reported varied across studies with 50/51 cases reporting Δ[HbO2], 39/51 reporting Δ[HHb], and 13/51 reporting total hemoglobin concentration Δ[HbT] (Δ[HbO2] + Δ[HHb]). However, of the 39 cases reporting Δ[HHb] in graphs or tables, only 24 studies explicitly discussed the response (i.e., direction of change) of this variable. In the studies where the fNIRS responses were discussed, 46/51 cases observed an increase in Δ[HbO2], 7/51 observed an increase or varied Δ[HHb], and 2/51 reported a varied or negative Δ[HbT]. An increase in Δ[HbO2] and decrease or no change in Δ[HHb] was observed in 15 studies. By reviewing this body of literature, we have identified that the majority of research articles reported an increase in Δ[HbO2] across various functional tasks and did not report the response of Δ[HHb]. Confirming the normal, healthy hemodynamic response in newborns will allow identification of unhealthy patterns and their association to normal neurodevelopment.
Type: | Article |
---|---|
Title: | Investigation of the Pattern of the Hemodynamic Response as Measured by Functional Near-Infrared Spectroscopy (fNIRS) Studies in Newborns, Less Than a Month Old: A Systematic Review |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3389/fnhum.2018.00371 |
Publisher version: | https://doi.org/10.3389/fnhum.2018.00371 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | Science & Technology, Social Sciences, Life Sciences & Biomedicine, Neurosciences, Psychology, Neurosciences & Neurology, near-infrared spectroscopy, functional activation, newborns, infant, neurovascular coupling, hemodynamic response, stimulus, brain activity, BLOOD OXYGENATION CHANGES, VISUAL-STIMULATION, HUMAN BRAIN, WAVELENGTH COMBINATIONS, AUDITORY-STIMULATION, OPTICAL TOPOGRAPHY, FRONTAL-LOBE, INFANTS, ACTIVATION, SPEECH |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health > Neonatology UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/10058745 |
Archive Staff Only
View Item |