Richards, CJ;
Smart, TJ;
Jones, PH;
Cubero, D;
(2018)
A microscopic Kapitza pendulum.
Scientific Reports
, 8
, Article 13107. 10.1038/s41598-018-31392-8.
Preview |
Text
Richards_Microscopic.pdf - Published Version Download (1MB) | Preview |
Abstract
Pyotr Kapitza studied in 1951 the unusual equilibrium features of a rigid pendulum when its point of suspension is under a high-frequency vertical vibration. A sufficiently fast vibration makes the top position stable, putting the pendulum in an inverted orientation that seemingly defies gravity. Kapitza’s analytical method, based on an asymptotic separation of fast and slow variables yielding a renormalized potential, has found application in many diverse areas. Here we study Kapitza’s pendulum going beyond its typical idealizations, by explicitly considering its finite stiffness and the dissipative interaction with the surrounding medium, and using similar theoretical methods as Kapitza. The pendulum is realized at the micrometre scale using a colloidal particle suspended in water and trapped by optical tweezers. Though the strong dissipation present at this scale prevents the inverted pendulum regime, new ones appear in which the equilibrium positions are displaced to the side, and with transitions between them determined either by the driving frequency or the friction coefficient. These new regimes could be exploited in applications aimed at particle separation at small scales.
Type: | Article |
---|---|
Title: | A microscopic Kapitza pendulum |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41598-018-31392-8 |
Publisher version: | https://doi.org/10.1038/s41598-018-31392-8 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/10056562 |
Archive Staff Only
View Item |