Xie, J;
Shevlin, SA;
Ruan, Q;
Moniz, SJA;
Liu, Y;
Liu, X;
Li, Y;
... Tang, J; + view all
(2018)
Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework.
Energy and Environmental Science
, 11
(6)
pp. 1617-1624.
10.1039/c7ee02981k.
Preview |
Text
Xie_Efficient visible.pdf - Published Version Download (2MB) | Preview |
Abstract
Water oxidation is a rate-determining step in solar driven H2 fuel synthesis and is technically challenging to promote. Despite decades of effort, only a few inorganic catalysts are effective and even fewer are effective under visible light. Recently, attention has been paid to synthetic semiconducting polymers, mainly on graphitic C3N4, with encouraging hydrogen evolution performance but lower activity for water oxidation. Here, a highly ordered covalent triazine-based framework, CTF-1 (C8N2H4), is synthesised by a very mild microwave-assisted polymerisation approach. It demonstrates extremely high activity for oxygen evolution under visible light irradiation, leading to an apparent quantum efficiency (AQE) of nearly 4% at 420 nm. Furthermore, the polymer can also efficiently evolve H2 from water. A high AQE of 6% at 420 nm for H2 production has also been achieved. The polymer holds great potential for overall water splitting. This exceptional performance is attributed to its well-defined and ordered structure, low carbonisation, and superior band positions.
Type: | Article |
---|---|
Title: | Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1039/c7ee02981k |
Publisher version: | http://dx.doi.org/10.1039/c7ee02981k |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. (https://creativecommons.org/licenses/by/3.0/) |
Keywords: | Science & Technology, Physical Sciences, Technology, Life Sciences & Biomedicine, Chemistry, Multidisciplinary, Energy & Fuels, Engineering, Chemical, Environmental Sciences, Chemistry, Engineering, Environmental Sciences & Ecology, GRAPHITIC CARBON NITRIDE, PHOTOCATALYTIC HYDROGEN-PRODUCTION, PHOTOELECTROCHEMICAL DEVICES, POLYMERIC PHOTOCATALYST, CONJUGATED POLYMERS, ORGANIC FRAMEWORK, EVOLUTION, GENERATION, DESIGN, ENERGY |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry |
URI: | https://discovery.ucl.ac.uk/id/eprint/10052903 |




Archive Staff Only
![]() |
View Item |