UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Ultimate strength of cylindrical shells with cutouts

Lee, SE; Sahin, S; Rigo, P; Park, M; Paik, JK; (2017) Ultimate strength of cylindrical shells with cutouts. Ships and Offshore Structures , 12 (Supp 1) S153-S173. 10.1080/17445302.2016.1271592. Green open access

[thumbnail of Paik_Manuscript-final.pdf]
Paik_Manuscript-final.pdf - Accepted version

Download (316kB) | Preview


Cutouts – perforations that are often made in wind turbine towers to allow access or passage – can also reduce the towers’ ultimate strength. Thus, cutouts may need to be included in the ultimate strength formulations for wind turbine towers as an influential parameter, where significant. The aims of this study are to examine the effects of cutouts on the ultimate-strength characteristics of wind turbine towers and to propose empirical formulae to predict the reduced ultimate strength under axial compression and pure bending. The structural features of cutouts and towers in real wind turbines are investigated, and the effects of different design variables – such as shape, location, aspect ratio, column slenderness ratio, and column aspect ratio – on the ultimate-strength behaviour are described. The ultimate strengths of the towers are computed using elastic–plastic large-deflection finite element analyses. Empirical formulae accommodating a whole range of actual dimensional characteristics of cutouts and towers are derived and proposed. The findings of this research and the proposed formulae have the potential to enhance the structural design and safety assessment of wind turbine towers.

Type: Article
Title: Ultimate strength of cylindrical shells with cutouts
Open access status: An open access version is available from UCL Discovery
DOI: 10.1080/17445302.2016.1271592
Publisher version: http://doi.org/10.1080/17445302.2016.1271592
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Cutouts, ultimate strength, wind turbine tower, parameters of influence, nonlinear finite element method
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10051287
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item