UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis

Turner, RM; Jackson, D; Wei, Y; Thompson, SG; Higgins, JPT; (2015) Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Statistics in Medicine , 34 (6) pp. 984-998. 10.1002/sim.6381. Green open access

[thumbnail of Turner_et_al-2015-Statistics_in_Medicine.pdf]
Preview
Text
Turner_et_al-2015-Statistics_in_Medicine.pdf - Published Version

Download (434kB) | Preview

Abstract

Numerous meta-analyses in healthcare research combine results from only a small number of studies, for which the variance representing between-study heterogeneity is estimated imprecisely. A Bayesian approach to estimation allows external evidence on the expected magnitude of heterogeneity to be incorporated. The aim of this paper is to provide tools that improve the accessibility of Bayesian meta-analysis. We present two methods for implementing Bayesian meta-analysis, using numerical integration and importance sampling techniques. Based on 14 886 binary outcome meta-analyses in the Cochrane Database of Systematic Reviews, we derive a novel set of predictive distributions for the degree of heterogeneity expected in 80 settings depending on the outcomes assessed and comparisons made. These can be used as prior distributions for heterogeneity in future meta-analyses. The two methods are implemented in R, for which code is provided. Both methods produce equivalent results to standard but more complex Markov chain Monte Carlo approaches. The priors are derived as log-normal distributions for the between-study variance, applicable to meta-analyses of binary outcomes on the log odds-ratio scale. The methods are applied to two example meta-analyses, incorporating the relevant predictive distributions as prior distributions for between-study heterogeneity. We have provided resources to facilitate Bayesian meta‐analysis, in a form accessible to applied researchers, which allow relevant prior information on the degree of heterogeneity to be incorporated. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Type: Article
Title: Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis
Open access status: An open access version is available from UCL Discovery
DOI: 10.1002/sim.6381
Publisher version: https://doi.org/10.1002/sim.6381
Language: English
Additional information: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Keywords: meta-analysis; Bayesian methods; heterogeneity; prior distributions
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology > MRC Clinical Trials Unit at UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10050236
Downloads since deposit
93Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item