Powell, J;
Mota, F;
Steadman, D;
Soudy, C;
Miyauchi, JT;
Crosby, S;
Jarvis, A;
... Selwood, DL; + view all
(2018)
Small molecule neuropilin-1 antagonists combine anti-angiogenic and anti-tumour activity with immune modulation through reduction of transforming growth factor beta (TGFβ) production in regulatory T-cells.
Journal of Medicinal Chemistry
, 61
(9)
pp. 4135-4154.
10.1021/acs.jmedchem.8b00210.
Preview |
Text
Chan acs.jmedchem.8b00210.pdf - Published Version Download (8MB) | Preview |
Abstract
We report the design, synthesis and comprehensive studybiological evaluation of a range ofsome potent small-molecule neuropilin-1 (NRP1) antagonists. NRP1 is implicated in the immune response to tumours, particularly in Treg cell fragility, required for PD1 checkpoint blockade. The design of these compounds was based on a previously identified compound EG00229, EG00229 which was used a starting point for optimisation. Through targeting of specific amino-acid residues additional H-bonding interactions were introduced, which led to increases in binding affinity and potency. The design of these molecules was informed and supported by X-ray crystal structures. Pharmacokinetic data was obtained for some of the most potent compounds, and cCompound 1 (EG01377) was identified as having properties suitable for further investigation. Compound 1 was then tested in several in vitro assays, and was shown to have anti-angiogenic, anti-migratory and anti-tumour effects. Remarkably, 1 was shown to be selective for NRP1 over the closely related protein NRP2. In purified Nrp1+, FoxP3+, CD25+ populations of Tregs from mice 1 was able to block a glioma conditioned medium induced increase in TGFβ production. This study therefore represents a comprehensive characterisation of a small-molecule NRP1 antagonist, and provides the basis for future in vivo studies.
Archive Staff Only
View Item |