Mitra, S;
Bale, G;
Highton, D;
Gunny, R;
Uria-Avellanal, C;
Bainbridge, A;
Sokolska, M;
... Robertson, NJ; + view all
(2017)
Pressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury.
Journal of Cerebral Blood Flow & Metabolism
10.1177/0271678X17733639.
(In press).
Preview |
Text
0271678x17733639.pdf - Published Version Download (1MB) | Preview |
Abstract
Hypoxic ischemic encephalopathy (HIE) leads to significant morbidity and mortality. Impaired autoregulation after hypoxia-ischaemia has been suggested to contribute further to injury. Thalamic lactate/N-Acetylasperate (Lac/NAA) peak area ratio of > 0.3 on proton (1H) magnetic resonance spectroscopy (MRS) is associated with poor neurodevelopment outcome following HIE. Cytochrome-c-oxidase (CCO) plays a central role in mitochondrial oxidative metabolism and ATP synthesis. Using a novel broadband NIRS system, we investigated the impact of pressure passivity of cerebral metabolism (CCO), oxygenation (haemoglobin difference (HbD)) and cerebral blood volume (total haemoglobin (HbT)) in 23 term infants following HIE during therapeutic hypothermia (HT). Sixty-minute epochs of data from each infant were studied using wavelet analysis at a mean age of 48 h. Wavelet semblance (a measure of phase difference) was calculated to compare reactivity between mean arterial blood pressure (MABP) with oxCCO, HbD and HbT. OxCCO-MABP semblance correlated with thalamic Lac/NAA ( r = 0.48, p = 0.02). OxCCO-MABP semblance also differed between groups of infants with mild to moderate and severe injury measured using brain MRI score ( p = 0.04), thalamic Lac/NAA ( p = 0.04) and neurodevelopmental outcome at one year ( p = 0.04). Pressure passive changes in cerebral metabolism were associated with injury severity indicated by thalamic Lac/NAA, MRI scores and neurodevelopmental assessment at one year of age.
Type: | Article |
---|---|
Title: | Pressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1177/0271678X17733639 |
Publisher version: | http://doi.org/10.1177/0271678X17733639 |
Language: | English |
Additional information: | © Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
Keywords: | Perinatal hypoxia, cerebral autoregulation, cerebral hemodynamics, metabolism, near infrared spectroscopy |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health > Neonatology UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/10044200 |
Archive Staff Only
View Item |