Maneas, E;
Xia, W;
Kuniyil Ajith Singh, M;
Sato, N;
Agano, T;
Ourselin, S;
West, S;
... Desjardins, A; + view all
(2018)
Human placental vasculature imaging using an LED-based photoacoustic/ultrasound imaging system.
In:
(Proceedings) SPIE Photonics West.
SPIE
Preview |
Text
104940Y.pdf - Published Version Download (545kB) | Preview |
Abstract
Minimally invasive fetal interventions, such as those used for therapy of twin-to-twin transfusion syndrome (TTTS), require accurate image guidance to optimise patient outcomes. Currently, TTTS can be treated fetoscopically by identifying anastomosing vessels on the chorionic (fetal) placental surface, and then performing photocoagulation. Incomplete photocoagulation increases the risk of procedure failure. Photoacoustic imaging can provide contrast for both haemoglobin concentration and oxygenation, and in this study, it was hypothesised that it can resolve chorionic placental vessels. We imaged a term human placenta that was collected after caesarean section delivery using a photoacoustic/ultrasound system (AcousticX) that included light emitting diode (LED) arrays for excitation light and a linear-array ultrasound imaging probe. Two-dimensional (2D) co-registered photoacoustic and B-mode pulse-echo ultrasound images were acquired and displayed in real-time. Translation of the imaging probe enabled 3D imaging. This feasibility study demonstrated that photoacoustic imaging can be used to visualise chorionic placental vasculature, and that it has strong potential to guide minimally invasive fetal interventions.
Archive Staff Only
![]() |
View Item |