Egbu, R;
Brocchini, S;
Khaw, PT;
Awwad, S;
(2017)
Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery.
European Journal of Pharmaceutics and Biopharmaceutics
, 124
pp. 95-103.
10.1016/j.ejpb.2017.12.019.
Preview |
Text
Brocchini_Egbu et al main MS final_after reviewer comment_final.pdf - Accepted Version Download (480kB) | Preview |
Abstract
Injectable gels have the potential to encapsulate drugs for sustained release of protein therapeutics for use in the eye. Hyaluronic acid (HA) is a biodegradable clinically used material and poly N-isopropylacrylamide (pNIPAAM) is a stimuli responsive polymer that can display a lower critical solution temperature (LCST) at physiological conditions. Two gel systems incorporating HA were prepared in the presence of the antibody infliximab (INF): i) 1% and 5 % tyramine-substituted HA (HA-Tyr) was enzymatically crosslinked in the presence of INF to form HA-Tyr-INF and ii) NIPAAM was chemically crosslinked in the presence of HA and INF with 1 and 3% poly(ethylene glycol) diacrylate (PEGDA) to form PEGDA-pNIPAAM-HA-INF. The PEGDA-pNIPAAM-HA-INF hydrogels displayed LCSTs at temperatures ranging from 31.4 ± 0.2 to 35.7 ± 0.3°C. Although all the gels prepared were injectable, INF-loaded gels with lower crosslinking density (1% PEGDA-pNIPAAM-HA and 1% HA-Tyr) showed lower elastic (G') and viscous (G'') moduli compared to higher crosslinked gels (3% PEGDA-pNIPAAM-HA-INF and 5% HA-Tyr-INF) resulting in differences in swelling ratio (SR). Moduli may be correlated with overall stiffness of the gel. All hydrogels demonstrated sustained release of INF in a two-compartment in vitro outflow model of the human eye called the PK-Eye. The 1% PEGDA-pNIPAAM-HA-INF hydrogel displayed the slowest release (24.9 ± 0.4% INF release by day 9) in phosphate buffered saline (PBS, pH 7.4), which is a better release profile than the free drug alone (tested under the same conditions). These results suggest that PEGDA-pNIPAAM-HA has potential for the continued development of formulations to prolong the intraocular release of proteins.
Archive Staff Only
View Item |