Ridge, PG;
Karch, CM;
Hsu, S;
Arano, I;
Teerlink, CC;
Ebbert, MTW;
Gonzalez Murcia, JD;
... Alzheimer’s Disease Neuroimaging Initiative, .; + view all
(2017)
Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience.
Genome Medicine
, 9
, Article 100. 10.1186/s13073-017-0486-1.
Preview |
Text (Version of record (as corrected 12 January 2018))
Ridge_Linkage_whole_genome_sequence_Corr_version.pdf - Published Version Download (2MB) | Preview |
Abstract
BACKGROUND: While age and the APOE ε4 allele are major risk factors for Alzheimer's disease (AD), a small percentage of individuals with these risk factors exhibit AD resilience by living well beyond 75 years of age without any clinical symptoms of cognitive decline. METHODS: We used over 200 "AD resilient" individuals and an innovative, pedigree-based approach to identify genetic variants that segregate with AD resilience. First, we performed linkage analyses in pedigrees with resilient individuals and a statistical excess of AD deaths. Second, we used whole genome sequences to identify candidate SNPs in significant linkage regions. Third, we replicated SNPs from the linkage peaks that reduced risk for AD in an independent dataset and in a gene-based test. Finally, we experimentally characterized replicated SNPs. RESULTS: Rs142787485 in RAB10 confers significant protection against AD (p value = 0.0184, odds ratio = 0.5853). Moreover, we replicated this association in an independent series of unrelated individuals (p value = 0.028, odds ratio = 0.69) and used a gene-based test to confirm a role for RAB10 variants in modifying AD risk (p value = 0.002). Experimentally, we demonstrated that knockdown of RAB10 resulted in a significant decrease in Aβ42 (p value = 0.0003) and in the Aβ42/Aβ40 ratio (p value = 0.0001) in neuroblastoma cells. We also found that RAB10 expression is significantly elevated in human AD brains (p value = 0.04). CONCLUSIONS: Our results suggest that RAB10 could be a promising therapeutic target for AD prevention. In addition, our gene discovery approach can be expanded and adapted to other phenotypes, thus serving as a model for future efforts to identify rare variants for AD and other complex human diseases.
Type: | Article |
---|---|
Title: | Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience. |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1186/s13073-017-0486-1 |
Publisher version: | http://dx.doi.org/10.1186/s13073-017-0486-1 |
Language: | English |
Additional information: | Copyright © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. - This is a corrected version of the article (correction published on 12 January 2018 (volume 10, article no. 4). |
Keywords: | Alzheimer’s disease, Linkage analyses, Protective variants, Utah Population Database, Whole genome sequencing |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases |
URI: | https://discovery.ucl.ac.uk/id/eprint/10040061 |
Archive Staff Only
View Item |