Blaiotta, Claudia;
(2017)
Bayesian generative learning of brain and spinal cord templates from neuroimaging datasets.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Thesis_corrected.pdf Download (3MB) | Preview |
Abstract
In the field of neuroimaging, Bayesian modelling techniques have been largely adopted and recognised as powerful tools for the purpose of extracting quantitative anatomical and functional information from medical scans. Nevertheless the potential of Bayesian inference has not yet been fully exploited, as many available tools rely on point estimation techniques, such as maximum likelihood estimation, rather than on full Bayesian inference. The aim of this thesis is to explore the value of approximate learning schemes, for instance variational Bayes, to perform inference from brain and spinal cord MRI data. The applications that will be explored in this work mainly concern image segmentation and atlas construction, with a particular emphasis on the problem of shape and intensity prior learning, from large training data sets of structural MR scans. The resulting computational tools are intended to enable integrated brain and spinal cord morphometric analyses, as opposed to the approach that is most commonly adopted in neuroimaging, which consists in optimising separate tools for brain and spine morphometrics.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Bayesian generative learning of brain and spinal cord templates from neuroimaging datasets |
Event: | UCL |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
UCL classification: | UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10025863 |
Archive Staff Only
View Item |