Browse by UCL people
Group by: Type | Date
Number of items: 41.
Article
Agudo, A;
Martinez Montiel, JM;
Agapito, L;
Calvo, B;
(2017)
Modal Space: A Physics-Based Model for Sequential Estimation of Time-Varying Shape from Monocular Video.
Journal of Mathematical Imaging and Vision
, 57
(1)
pp. 75-98.
10.1007/s10851-016-0668-2.
|
Işlk, M;
Rünz, M;
Georgopoulos, M;
Khakhulin, T;
Starck, J;
Agapito, L;
Nießner, M;
(2023)
HumanRF: High-Fidelity Neural Radiance Fields for Humans in Motion.
ACM Transactions on Graphics
, 42
(4)
, Article 160. 10.1145/3592415.
|
Penate-Sanchez, A;
Agapito, L;
(2020)
Joint Image and 3D Shape Part Representation in Large Collections for Object Blending.
IEEE Access
, 8
pp. 35696-35711.
10.1109/ACCESS.2020.2975106.
|
Rau, A;
Bhattarai, B;
Agapito, L;
Stoyanov, D;
(2023)
Bimodal Camera Pose Prediction for Endoscopy.
IEEE Transactions on Medical Robotics and Bionics
10.1109/TMRB.2023.3320267.
(In press).
|
Tome, D;
Alldieck, T;
Peluse, P;
Pons-Moll, G;
Agapito, L;
Badino, H;
De la Torre, F;
(2020)
SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera.
IEEE Transactions on Pattern Analysis and Machine Intelligence
10.1109/TPAMI.2020.3029700.
(In press).
|
Wang, J;
Tarrio, J;
Agapito, L;
Alcantarilla, PF;
Vakhitov, A;
(2023)
SeMLaPS: Real-Time Semantic Mapping With Latent Prior Networks and Quasi-Planar Segmentation.
IEEE Robotics and Automation Letters
, 8
(12)
pp. 7954-7961.
10.1109/LRA.2023.3322647.
|
Book chapter
Svitov, D;
Morerio, P;
Agapito, L;
Del Bue, A;
(2025)
HAHA: Highly Articulated Gaussian Human Avatars with Textured Mesh Prior.
In: Cho, M and Laptev, I and Tran, D and Yao, A and Zha, H, (eds.)
Computer Vision – ACCV 2024.
(pp. 105-122).
Springer: Singapore.
|
Proceedings paper
Agudo, A;
Agapito, L;
Calvo, B;
Montiel, JMM;
(2014)
Good Vibrations: A Modal Analysis Approach for Sequential Non-rigid Structure from Motion.
In:
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.
(pp. pp. 1558-1565).
IEEE: Columbus, OH, USA.
|
Dorta, G;
Vicente, S;
Agapito, L;
Campbell, NDF;
Prince, S;
Simpson, I;
(2017)
Laplacian pyramid of conditional variational autoencoders.
In:
(Proceedings) Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017).
(pp. Article No.7).
ACM: New York, NY, USA.
|
Dorta, G;
Vicente, S;
Agapito, L;
Campbell, NDF;
Simpson, I;
(2018)
Structured Uncertainty Prediction Networks.
In:
(Proceedings) 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
(pp. pp. 5477-5485).
IEEE: Salt Lake City, UT, USA.
|
Firman, M;
Campbell, NDF;
Agapito, L;
Brostow, GJ;
(2018)
DiverseNet: When One Right Answer is not Enough.
In:
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
(pp. pp. 5598-5607).
IEEE: Salt Late City, UT, USA.
|
Giebenhain, Simon;
Kirschstein, Tobias;
Georgopoulos, Markos;
Ruenz, Martin;
Agapito, Lourdes;
Niessnerl, Matthias;
(2024)
MonoNPHM: Dynamic Head Reconstruction from Monocular Videos.
In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
(pp. pp. 10747-10758).
Institute of Electrical and Electronics Engineers (IEEE)
|
Giebenhain, Simon;
Kirschstein, Tobias;
Georgopoulos, Markos;
Rünz, Martin;
Agapito, Lourdes;
Nießner, Matthias;
(2023)
Learning Neural Parametric Head Models.
In: O'Conner, Lisa, (ed.)
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
(pp. pp. 21003-21012).
IEEE: Vancouver, BC, Canada.
|
Giebenhain, Simon;
Kirschstein, Tobias;
Rünz, Martin;
Agapito, Lourdes;
Nießner, Matthias;
(2024)
NPGA: Neural Parametric Gaussian Avatars.
In: Igarashi, Takeo and Shamir, Ariel and Zhang, Hao (Richard), (eds.)
SA '24: SIGGRAPH Asia 2024 Conference Papers.
(pp. Article No-127).
ACM (Association for Computing Machinery): New York, NY, United States.
|
Hadjivelichkov, D;
Zwane, S;
Deisenroth, MP;
Agapito, L;
Kanoulas, D;
(2025)
Semantic Cross-Pose Correspondence from a Single Example.
In:
Proceedings of the 2025 IEEE International Conference on Robotics and Automation (ICRA).
(pp. pp. 1414-1420).
IEEE: Atlanta, GA, USA.
|
Jang, W;
Agapito, L;
(2022)
CodeNeRF: Disentangled Neural Radiance Fields for Object Categories.
In:
2021 IEEE/CVF International Conference on Computer Vision (ICCV).
(pp. pp. 12929-12938).
IEEE: Montreal, QC, Canada.
|
Jang, W;
Weinzaepfel, P;
Leroy, V;
Agapito, L;
Revaud, J;
(2025)
Pow3R: Empowering Unconstrained 3D Reconstruction with Camera and Scene Priors.
In:
Proceedings of the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
(pp. pp. 1071-1081).
IEEE: Nashville, TN, USA.
|
Jang, Wonbong;
Agapito, Lourdes;
(2024)
NViST: In the Wild New View Synthesis from a Single Image with Transformers.
In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
(pp. pp. 10181-10193).
Institute of Electrical and Electronics Engineers (IEEE)
|
Maiti, Shalini;
Agapito, Lourdes;
Kokkinos, Filippos;
(2025)
Gen3DEval: Using vLLMs for Automatic Evaluation of Generated 3D Objects.
In:
2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
(pp. pp. 18552-18562).
IEEE: Nashville, TN, USA.
|
Mohamed, M;
Agapito, L;
(2024)
DynamicSurf: Dynamic Neural RGB-D Surface Reconstruction With an Optimizable Feature Grid.
In:
2024 International Conference on 3D Vision (3DV).
(pp. pp. 820-830).
IEEE: Davos, Switzerland.
|
Mohamed, M;
Agapito, L;
(2023)
GNPM: Geometric-Aware Neural Parametric Models.
In:
Proceedings of 2022 International Conference on 3D Vision, 3DV 2022.
(pp. pp. 166-175).
IEEE: Prague, Czech Republic.
|
Mustafa, Armin;
Caliskan, Akin;
Agapito, Lourdes;
Hilton, Adrian;
(2021)
Multi-person Implicit Reconstruction from a Single Image.
In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
(pp. pp. 14469-14478).
Institute of Electrical and Electronics Engineers (IEEE)
|
Rau, Anita;
Bhattarai, Binod;
Agapito, Lourdes;
Stoyanov, Danail;
(2023)
Task-Guided Domain Gap Reduction for Monocular Depth Prediction in Endoscopy.
In: Bhattarai, Binod and Ali, Sharib and Rau, Anita and Nguyen, Anh and Namburete, Ana and Caramalau, Razvan and Stoyanov, Danail, (eds.)
Data Engineering in Medical Imaging: DEMI 2023.
(pp. pp. 111-122).
Springer: Cham, Switzerland.
|
Runz, M;
Agapito, L;
(2017)
Co-fusion: Real-time segmentation, tracking and fusion of multiple objects.
In:
(Proceedings) 2017 IEEE International Conference on Robotics and Automation (ICRA).
(pp. pp. 4471-4478).
IEEE: Singapore.
|
Runz, M;
Buffier, M;
Agapito, L;
(2019)
MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects.
In: Chu, D and Gabbard, JL and Grubert, J and Regenbrecht, H, (eds.)
(Proceedings) 17th IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
(pp. pp. 10-20).
IEEE: Munich, Germany.
|
Runz, M;
Li, K;
Tang, M;
Ma, L;
Kong, C;
Schmidt, T;
Reid, I;
... Newcombe, R; + view all
(2020)
FroDO: From Detections to 3D Objects.
In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
(pp. pp. 14708-14717).
IEEE: Seattle, WA, USA.
|
Russell, C;
Yu, R;
Agapito, L;
(2014)
Video Pop-up: Monocular 3D Reconstruction of Dynamic Scenes.
In: Fleet, D and Pajdla, T and Schiele, B and Tuytelaars, T, (eds.)
Computer Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII.
(pp. pp. 583-598).
Springer International Publishing: Switzerland.
|
Tome, D;
Peluse, P;
Agapito, L;
Badino, H;
(2019)
xR-EgoPose: Egocentric 3D Human Pose from an HMD Camera.
In:
2019 IEEE/CVF International Conference on Computer Vision (ICCV).
(pp. pp. 7727-7737).
IEEE: Seoul, Korea (South).
|
Tome, D;
Russell, C;
Agapito, L;
(2017)
Lifting from the Deep: Convolutional 3D Pose Estimation from a Single Image.
In:
(Proceedings) 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
(pp. pp. 5689-5698).
IEEE: Honolulu, HI, USA.
|
Tome, D;
Toso, M;
Agapito, L;
Russell, C;
(2018)
Rethinking Pose in 3D: Multi-stage Refinement and Recovery for Markerless Motion Capture.
In:
(Proceedings) 6th International Conference on 3D Vision (3DV).
(pp. pp. 474-483).
IEEE
|
Vecerik, M;
Kay, J;
Hadsell, R;
Agapito, L;
Scholz, J;
(2022)
Few-Shot Keypoint Detection as Task Adaptation via Latent Embeddings.
In:
Proceedings - IEEE International Conference on Robotics and Automation.
(pp. pp. 1251-1257).
IEEE: Philadelphia, PA, USA.
|
Vecerik, M;
Regli, JB;
Sushkov, O;
Barker, D;
Pevceviciute, R;
Rothörl, T;
Schuster, C;
... Scholz, J; + view all
(2020)
S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency.
In: Kober, J and Ramos, F and Tomlin, C, (eds.)
Proceedings of the 2020 Conference on Robot Learning.
(pp. pp. 449-460).
Proceedings of Machine Learning Research (PMLR): Cambridge, MA, USA.
|
Vecerik, Mel;
Doersch, Carl;
Yang, Yi;
Davchev, Todor;
Aytar, Yusuf;
Zhou, Guangyao;
Hadsell, Raia;
... Scholz, Jon; + view all
(2024)
RoboTAP: Tracking Arbitrary Points for Few-Shot Visual Imitation.
In:
Proceedings - IEEE International Conference on Robotics and Automation.
(pp. pp. 5397-5403).
IEEE: Yokohama, Japan.
|
Vicente, S;
Carreira, J;
Agapito, L;
Batista, J;
(2014)
Reconstructing PASCAL VOC.
In:
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.
(pp. pp. 41-48).
IEEE: Columbus, OH, USA.
|
Wang, H;
Agapito, L;
(2025)
3D Reconstruction with Spatial Memory.
In:
Proceedings of the 2025 International Conference on 3D Vision (3DV).
(pp. pp. 78-89).
IEEE: Singapore.
|
Wang, H;
Wang, J;
Agapito, L;
(2023)
Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural Real-Time SLAM.
In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
(pp. pp. 13293-13302).
Institute of Electrical and Electronics Engineers (IEEE)
|
Wang, Hengyi;
Wang, Jingwen;
Agapito, Lourdes;
(2024)
MorpheuS: Neural Dynamic 360∘ Surface Reconstruction from Monocular RGB-D Video.
In:
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
(pp. pp. 20965-20976).
IEEE: Seattle, WA, USA.
|
Wang, J;
Bleja, T;
Agapito, L;
(2023)
GO-Surf: Neural Feature Grid Optimization for Fast, High-Fidelity RGB-D Surface Reconstruction.
In:
Proceedings - 2022 International Conference on 3D Vision, 3DV 2022.
(pp. pp. 433-442).
IEEE: Prague, Czechia.
|
Yu, R;
Russell, C;
Campbell, NDF;
Agapito, L;
(2015)
Direct, Dense, and Deformable: Template-Based Non-Rigid 3D Reconstruction from RGB Video.
In:
2015 IEEE International Conference on Computer Vision.
(pp. pp. 918-926).
IEEE
|
Working / discussion paper
Mohamed, Mirgahney;
Agapito, Lourdes;
(2023)
DynamicSurf: Dynamic Neural RGB-D Surface Reconstruction with an Optimizable Feature Grid.
arXiv.org: Ithaca (NY), USA.
|
Mohamed, Mirgahney;
Agapito, Lourdes;
(2022)
GNPM: Geometric-Aware Neural Parametric Models.
ArXiv: Ithaca, NY, USA.
|