UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.

Conti, L; Pollard, SM; Gorba, T; Reitano, E; Toselli, M; Biella, G; Sun, Y; ... Smith, A; + view all (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biology , 3 (9) , Article e283. 10.1371/journal.pbio.0030283. Green open access

[thumbnail of 96089.pdf]
Preview
PDF
96089.pdf

Download (878kB)

Abstract

Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.

Type: Article
Title: Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.
Location: US
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pbio.0030283
Publisher version: http://dx.doi.org/10.1371/journal.pbio.0030283
Language: English
Additional information: © 2005 Conti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. PMCID: PMC1184591
Keywords: Animals, Base Sequence, Cell Differentiation, Cell Division, Cells, Cultured, Embryo, Mammalian, Epidermal Growth Factor, Fibroblast Growth Factor 2, Humans, Mice, Molecular Sequence Data, Neurons, Pluripotent Stem Cells, Rats, Rats, Sprague-Dawley, Stem Cell Transplantation
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/96089
Downloads since deposit
186Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item