UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Novel 3D imaging platform tracks cancer progression in vivo

McGinty, J; French, P; Frankel, P; (2016) Novel 3D imaging platform tracks cancer progression in vivo. The Biochemist , 38 (6) pp. 12-15. Green open access

[thumbnail of Frankel_Dec2016-Biochemist OPT platform.pdf]
Preview
Text
Frankel_Dec2016-Biochemist OPT platform.pdf - Published Version

Download (576kB) | Preview

Abstract

Optical imaging underpins biomedical research in many respects and recent decades have seen spectacular advances, particularly in fluorescence imaging where genetic engineering approaches to labelling have been combined with new light sources, detectors and data analysis techniques to provide capabilities like super-resolution beyond the diffraction limit, exquisite spectroscopic contrast for molecular readouts and high-speed image capture for in vivo and high-throughput applications. However, the main impact of such advanced instrumentation and data analysis has been to provide unprecedented quantitative 2D and 3D information concerning samples compatible with microscopy where volumes of less than 1 mm3 are typically imaged in a single 'acquisition'. The ability to view and measure cellular processes and signalling pathways in live cells has been a significant advance for biomedical research and drug discovery. However, for conventional microscope-based assays and experiments, the samples typically comprise thin layers of cells that are not experiencing the same signals that they would in a 3D tissue context and any findings may not directly translate to live organisms. It is desirable to study disease processes in live intact organisms that can provide appropriate physiological complexity. For cancer studies, recent research from our group shows that optical tomography can be used to directly monitor in vivo changes in tumour growth and vascular development in a zebrafish cancer model over time. This technique not only improves the value of the collected data, but if used on a wider scale should result in a reduction in the number of animals used in biomedical research.

Type: Article
Title: Novel 3D imaging platform tracks cancer progression in vivo
Open access status: An open access version is available from UCL Discovery
Publisher version: http://www.biochemist.org/bio/03806/0012/038060012...
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Pre-clinical and Fundamental Science
URI: https://discovery.ucl.ac.uk/id/eprint/1545331
Downloads since deposit
54Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item