UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Nanotechnology for Stimulating Osteoprogenitor Differentiation.

Ibrahim, A; Bulstrode, NW; Whitaker, IS; Eastwood, DM; Dunaway, D; Ferretti, P; (2016) Nanotechnology for Stimulating Osteoprogenitor Differentiation. The Open Orthopaedics Journal , 10 (Suppl 3) pp. 849-861. 10.2174/1874325001610010849. Green open access

[thumbnail of Ibrahim et al. 2016 Nanotechnology Review.pdf]
Preview
Text
Ibrahim et al. 2016 Nanotechnology Review.pdf - Published Version

Download (1MB) | Preview

Abstract

BACKGROUND: Bone is the second most transplanted tissue and due to its complex structure, metabolic demands and various functions, current reconstructive options such as foreign body implants and autologous tissue transfer are limited in their ability to restore defects. Most tissue engineering approaches target osteoinduction of osteoprogenitor cells by modifying the extracellular environment, using scaffolds or targeting intracellular signaling mechanisms or commonly a combination of all of these. Whilst there is no consensus as to what is the optimal cell type or approach, nanotechnology has been proposed as a powerful tool to manipulate the biomolecular and physical environment to direct osteoprogenitor cells to induce bone formation. METHODS: Review of the published literature was undertaken to provide an overview of the use of nanotechnology to control osteoprogenitor differentiation and discuss the most recent developments, limitations and future directions. RESULTS: Nanotechnology can be used to stimulate osteoprogenitor differentiation in a variety of way. We have principally classified research into nanotechnology for bone tissue engineering as generating biomimetic scaffolds, a vector to deliver genes or growth factors to cells or to alter the biophysical environment. A number of studies have shown promising results with regards to directing ostroprogenitor cell differentiation although limitations include a lack of in vivo data and incomplete characterization of engineered bone. CONCLUSION: There is increasing evidence that nanotechnology can be used to direct the fate of osteoprogenitor and promote bone formation. Further analysis of the functional properties and long term survival in animal models is required to assess the maturity and clinical potential of this.

Type: Article
Title: Nanotechnology for Stimulating Osteoprogenitor Differentiation.
Location: Netherlands
Open access status: An open access version is available from UCL Discovery
DOI: 10.2174/1874325001610010849
Publisher version: http://doi.org/10.2174/1874325001610010849
Language: English
Additional information: Copyright © 2017 The Author(s). All rights reserved. This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Keywords: Nanofibre, Nanomaterials, Nanoparticles, Nanoscaffolds, Nanotechnology, Osteogenic differentiation, Osteoprogenitor cells
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Biology and Cancer Dept
URI: https://discovery.ucl.ac.uk/id/eprint/1542938
Downloads since deposit
90Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item