Steventon, B;
Mayor, R;
Streit, A;
(2016)
Directional cell movements downstream of Gbx2 and Otx2 control the assembly of sensory placodes.
Biology Open
, 5
(11)
pp. 1620-1624.
10.1242/bio.020966.
Preview |
Text
1620.full.pdf - Published Version Download (5MB) | Preview |
Abstract
Cranial placodes contribute to sensory structures including the inner ear, the lens and olfactory epithelium and the neurons of the cranial sensory ganglia. At neurula stages, placode precursors are interspersed in the ectoderm surrounding the anterior neural plate before segregating into distinct placodes by as yet unknown mechanisms. Here, we perform live imaging to follow placode progenitors as they aggregate to form the lens and otic placodes. We find that while placode progenitors move with the same speed as their non-placodal neighbours, they exhibit increased persistence and directionality and these properties are required to assemble morphological placodes. Furthermore, we demonstrate that these factors are components of the transcriptional networks that coordinate placode cell behaviour including their directional movements. Together with previous work, our results support a dual role for Otx and Gbx transcription factors in both the early patterning of the neural plate border and the later segregation of its derivatives into distinct placodes.
Type: | Article |
---|---|
Title: | Directional cell movements downstream of Gbx2 and Otx2 control the assembly of sensory placodes |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1242/bio.020966 |
Publisher version: | http://dx.doi.org/10.1242/bio.020966 |
Language: | English |
Additional information: | © 2016. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
Keywords: | Science & Technology, Life Sciences & Biomedicine, Biology, Life Sciences & Biomedicine - Other Topics, Cell migration, Lens, Live imaging, Morphogenesis, Otic, Peripheral nervous system, CRANIAL PLACODES, XENOPUS-LAEVIS, EXPRESSION, DIFFERENTIATION, SEGREGATION, PRECURSORS, INDUCTION, EMBRYO, LENS |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Cell and Developmental Biology |
URI: | https://discovery.ucl.ac.uk/id/eprint/1519971 |
Archive Staff Only
View Item |