Leon-Rico, D;
Aldea, M;
Sanchez-Baltasar, R;
Mesa-Nuñez, C;
Record, J;
Burns, SO;
Santilli, G;
... Almarza, E; + view all
(2016)
Lentiviral Vector-Mediated Correction of a Mouse Model of Leukocyte Adhesion Deficiency Type I.
Human Gene Therapy
, 27
(9)
pp. 668-678.
10.1089/hum.2016.016.
Preview |
Text
Thrasher, _hum.2016.016.pdf Download (475kB) | Preview |
Abstract
Leukocyte adhesion deficiency type I (LAD-I) is a primary immunodeficiency caused by mutations in the ITGB2 gene and is characterized by recurrent and life-threatening bacterial infections. These mutations lead to defective or absent expression of β2 integrins on the leukocyte surface, compromising adhesion and extravasation at sites of infection. Three different lentiviral vectors (LVs) conferring ubiquitous or preferential expression of CD18 in myeloid cells were constructed and tested in human and mouse LAD-I cells. All three hCD18-LVs restored CD18 and CD11a membrane expression in LAD-I patient-derived lymphoblastoid cells. Corrected cells recovered the ability to aggregate and bind to sICAM-1 after stimulation. All vectors induced stable hCD18 expression in hematopoietic cells from mice with a hypomorphic Itgb2 mutation (CD18(HYP)), both in vitro and in vivo after transplantation of corrected cells into primary and secondary CD18(HYP) recipients. hCD18(+) hematopoietic cells from transplanted CD18(HYP) mice also showed restoration of mCD11a surface co-expression. The analysis of in vivo neutrophil migration in CD18(HYP) mice subjected to two different inflammation models demonstrated that the LV-mediated gene therapy completely restored neutrophil extravasation in response to inflammatory stimuli. Finally, these vectors were able to correct the phenotype of human myeloid cells derived from CD34(+) progenitors defective in ITGB2 expression. These results support for the first time the use of hCD18-LVs for the treatment of LAD-I patients in clinical trials.
Archive Staff Only
View Item |