UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Probabilistic prediction of Alzheimer’s disease from multimodal image data with Gaussian processes

Young, JM; (2015) Probabilistic prediction of Alzheimer’s disease from multimodal image data with Gaussian processes. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Thesis.pdf] PDF
Thesis.pdf
Available under License : See the attached licence file.

Download (12MB)

Abstract

Alzheimer’s disease, the most common form of dementia, is an extremely serious health problem, and one that will become even more so in the coming decades as the global population ages. This has led to a massive effort to develop both new treatments for the condition and new methods of diagnosis; in fact the two are intimately linked as future treatments will depend on earlier diagnosis, which in turn requires the development of biomarkers that can be used to identify and track the disease. This is made possible by studies such as the Alzheimer’s disease neuroimaging initiative which provides previously unimaginable quantities of imaging and other data freely to researchers. It is the task of early diagnosis that this thesis focuses on. We do so by borrowing modern machine learning techniques, and applying them to image data. In particular, we use Gaussian processes (GPs), a previously neglected tool, and show they can be used in place of the more widely used support vector machine (SVM). As combinations of complementary biomarkers have been shown to be more useful than the biomarkers are individually, we go on to show GPs can also be applied to integrate different types of image and non-image data, and thanks to their properties this improves results further than it does with SVMs. In the final two chapters, we also look at different ways to formulate both the prediction of conversion to Alzheimer’s disease as a machine learning problem and the way image data can be used to generate features for input as a machine learning algorithm. Both of these show how unconventional approaches may improve results. The result is an advance in the state-of-the-art for a very clinically important problem, which may prove useful in practice and show a direction of future research to further increase the usefulness of such methods

Type: Thesis (Doctoral)
Title: Probabilistic prediction of Alzheimer’s disease from multimodal image data with Gaussian processes
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/1461115
Downloads since deposit
733Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item