Patel, R;
(2008)
Spectroscopy and dynamics of Rydberg states of NO in static and ramped electric fields.
Doctoral thesis , UCL (University College London).
Preview |
Text
Patel_Thesis.pdf Download (16MB) | Preview |
Abstract
This thesis reports the effect of applying static and ramped electric fields to quasi-bound Rydberg states of NO, with principal quantum number n = 25 - 32. The Rydberg states are excited by double resonance via the v'= 0,/V' = 0, and v' = 0,N' = 2 rovibrational states of the intermediate A2!' state of NO. Spectroscopic data is obtained by application of a static electric field ranging from 0 to 129 V cm"1, and ramped electric fields. In the presence of DC electric fields, the experimental Stark spectra presented in this thesis reveal a number of new interesting features, simulated using a matrix-diagonalisation approach. In this calculation, the adjustable parameters are the dipole transition moments from the various angular momentum components of the / -state, A, (/), for which just one set is used to obtain the qualitative agreement with the experimental spectra via two different rotational states of the / -state. The first detailed investigations of the selective field ionisation (SFI) of Rydberg states in a molecule are presented. The competition between electron-nuclear coupling and electron-field coupling is investigated and it is shown that the slew rate of the applied electric field can be exploited to control the rotational quantum state composition of field-ionised molecules.
Type: | Thesis (Doctoral) |
---|---|
Title: | Spectroscopy and dynamics of Rydberg states of NO in static and ramped electric fields |
Identifier: | PQ ETD:593199 |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Thesis digitised by ProQuest. |
URI: | https://discovery.ucl.ac.uk/id/eprint/1445875 |
Archive Staff Only
View Item |