UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Quantitative studies of volcanic processes on Mars using data from the Mars Global Surveyor.

Bishop, L.J.; (2006) Quantitative studies of volcanic processes on Mars using data from the Mars Global Surveyor. Doctoral thesis , University of London. Green open access

[thumbnail of U592693.pdf] Text
U592693.pdf

Download (41MB)

Abstract

Volcanic processes on Mars were investigated using topographic profiles derived with the help of IDL software from data collected by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor Mission (MGS) in 1997-2001 and images obtained by the MGS Mars Orbiter Camera (MOC) and by the earlier Viking mission. Thickness and slope values for lava flows at both Elysium Mons and Alba Patera made it possible to compute flow emplacement times and effusion rates using the flow growth model proposed by C. R. J. Kilburn and R. M. C Lopes in 1990. Geological mapping of the Elysium volcanic region showed that Elysium Mons was emplaced as a result of a single shift in vent position on top of an older volcanic edifice, here termed the Ancient Volcanic Edifice (AVE). This implies that there have been substantial variations in both position and time for the magma supply. Calculations suggest that the flows at Alba Patera were emplaced more quickly than those at Elysium Mons, possibly owing to differences in fissure width and lava composition. There is evidence for both aa and pahoehoe on the summit areas of Elysium Mons and Alba Patera. The presence of aa is consistent with the view that long lava flows on Mars are emplaced quickly. Pahoehoe flows imply slow emplacement, and their inferred presence on Mars provides support for the theory that long terrestrial lavas are often emplaced as sheets of inflated pahoehoe. MOC image analysis indicated that late-stage explosive activity has occurred at several Martian volcanoes where it was previously undetected, contrary to the prevalent view that Martian volcanism evolves from explosive to effusive activity. To resolve the many ambiguities inherent in morphological data and imagery the need remains for ground truthing by experienced observers and detailed geochemical analyses in situ or by means of a sample return mission.

Type: Thesis (Doctoral)
Title: Quantitative studies of volcanic processes on Mars using data from the Mars Global Surveyor.
Identifier: PQ ETD:592693
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by Proquest
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/1445373
Downloads since deposit
465Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item