Herbster, M;
Lever, G;
Pontil, M;
(2008)
Online prediction on large diameter graphs.
In: Koller, D and Schuurmans, D and Bengio, Y and Bottou, B, (eds.)
Advances in Neural Information Processing Systems 21 (NIPS 2008).
(pp. pp. 649-656).
Neural Information Processing Systems Foundation
Preview |
Text
135669.pdf Available under License : See the attached licence file. Download (175kB) |
Abstract
We continue our study of online prediction of the labelling of a graph. We show a fundamental limitation of Laplacian-based algorithms: if the graph has a large diameter then the number of mistakes made by such algorithms may be proportional to the square root of the number of vertices, even when tackling simple problems. We overcome this drawback by means of an efficient algorithm which achieves a logarithmic mistake bound. It is based on the notion of a spine, a path graph which provides a linear embedding of the original graph. In practice, graphs may exhibit cluster structure; thus in the last part, we present a modified algorithm which achieves the "best of both worlds": it performs well locally in the presence of cluster structure, and globally on large diameter graphs.
Type: | Proceedings paper |
---|---|
Title: | Online prediction on large diameter graphs |
Event: | Neural Information Processing Systems 2008 |
ISBN-13: | 9781605609492 |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | http://papers.nips.cc/paper/3475-online-prediction... |
Language: | English |
Additional information: | Copyright © The Authors 2008. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/135669 |
Archive Staff Only
View Item |