Petrova, D.;
(2011)
Non-invasive dissection of the human visual system.
Doctoral thesis , UCL (University College London).
![]() Preview |
PDF
1310438.pdf Download (15MB) |
Abstract
A flickering stimulus can appear brighter or of different colour than a steady stimulus of the same spectral composition and equal time-averaged intensity. The change in appearance is consistent with the distortion product of a nonlinearity in the human visual system. This nonlinearity is used for non-invasive dissection of the human visual system into prenonlinearity and post-nonlinearity linear stages, which affect the amplitude of the sinusoidal signals that they process. A five-channel Maxwellian system was used to generate cosine-windowed, amplitude-modulated, sinusoidally-flickering stimuli. The subjects adjusted the maximum modulation of the signal in order to set the threshold for the perception of flicker and colour or brightness change. The pre-nonlinearity filter was tested by varying the carrier frequency between 5 Hz and 60 Hz and the post-nonlinearity filter was measured by varying the amplitude-modulation frequency between 0.25 Hz and 5 Hz. The L- and M-cone pathways are separately measured by using a new combination of the silent-cone-substitution technique and the sandwich model. The distortion product at the output of the nonlinearity is measured by using a new matching method for measuring the colour and brightness changes. The results suggest that the pre-nonlinearity filter is band-pass and shows substantial adaptation with light intensity that can explain most of the adaptation in the visual pathways. The post-nonlinearity filter is low-pass and shows little or no adaptation with light intensity. The input-output function of the nonlinearity can be described as an expansive, quadratic function that rapidly saturates at high input levels.
Type: | Thesis (Doctoral) |
---|---|
Title: | Non-invasive dissection of the human visual system |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
UCL classification: | |
URI: | https://discovery.ucl.ac.uk/id/eprint/1310438 |
Archive Staff Only
![]() |
View Item |