Compton, Hannah;
Smith, Madeleine L;
Bull, Caroline;
Korologou-Linden, Roxanna;
Ben-Shlomo, Yoav;
Bell, Joshua A;
Williams, Dylan M;
(2024)
Life course plasma metabolomic signatures of genetic liability to Alzheimer's disease.
Scientific Reports
, 14
(1)
, Article 3896. 10.1038/s41598-024-54569-w.
Preview |
PDF
s41598-024-54569-w.pdf - Published Version Download (2MB) | Preview |
Abstract
Mechanisms through which most known Alzheimer's disease (AD) loci operate to increase AD risk remain unclear. Although Apolipoprotein E (APOE) is known to regulate lipid homeostasis, the effects of broader AD genetic liability on non-lipid metabolites remain unknown, and the earliest ages at which metabolic perturbations occur and how these change over time are yet to be elucidated. We examined the effects of AD genetic liability on the plasma metabolome across the life course. Using a reverse Mendelian randomization framework in two population-based cohorts [Avon Longitudinal Study of Parents and Children (ALSPAC, n = 5648) and UK Biobank (n ≤ 118,466)], we estimated the effects of genetic liability to AD on 229 plasma metabolites, at seven different life stages, spanning 8 to 73 years. We also compared the specific effects of APOE ε4 and APOE ε2 carriage on metabolites. In ALSPAC, AD genetic liability demonstrated the strongest positive associations with cholesterol-related traits, with similar magnitudes of association observed across all age groups including in childhood. In UK Biobank, the effect of AD liability on several lipid traits decreased with age. Fatty acid metabolites demonstrated positive associations with AD liability in both cohorts, though with smaller magnitudes than lipid traits. Sensitivity analyses indicated that observed effects are largely driven by the strongest AD instrument, APOE, with many contrasting effects observed on lipids and fatty acids for both ε4 and ε2 carriage. Our findings indicate pronounced effects of the ε4 and ε2 genetic variants on both pro- and anti-atherogenic lipid traits and sphingomyelins, which begin in childhood and either persist into later life or appear to change dynamically.
Type: | Article |
---|---|
Title: | Life course plasma metabolomic signatures of genetic liability to Alzheimer's disease |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41598-024-54569-w |
Publisher version: | http://dx.doi.org/10.1038/s41598-024-54569-w |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | ALSPAC, APOE, Alzheimer’s disease, Epidemiology, Mendelian randomization, Metabolism, NMR, Polygenic risk score, UK Biobank, Child, Humans, Alzheimer Disease, Genotype, Longitudinal Studies, Life Change Events, Apolipoproteins E, Apolipoprotein E4 |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Division of Psychiatry UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Division of Psychiatry > Mental Health of Older People |
URI: | https://discovery.ucl.ac.uk/id/eprint/10188265 |
Archive Staff Only
View Item |