UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Measuring and modelling fAPAR for satellite product validation

Origo, Niall Joseph; (2023) Measuring and modelling fAPAR for satellite product validation. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Niall_Origo_110029060_PhD_v2_publish.pdf]
Preview
Text
Niall_Origo_110029060_PhD_v2_publish.pdf - Other

Download (23MB) | Preview

Abstract

This thesis presents a comprehensive approach to satellite Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) product validation. This draws on 3D radiative transfer modelling and metrology to characterise the biases associated with a satellite fAPAR algorithm and the uncertainty associated with fAPAR estimates. This extends existing approaches which tend to assume that the in situ measurement technique produces the same fAPAR quantity as the satellite product. The validation procedure involves creating a closure experiment where every aspect of the satellite product definition and its associated assumptions can be tested from the perspective of the in situ and satellite sensors. The intrinsic differences created by the satellite product assumptions are also assessed, where a new reference is created. This is known as the “true” fAPAR since it is perfectly knowable within the context of the radiative transfer model used. Correction factors between the in situ and satellite-derived fAPAR are created to correct data collected over Wytham Woods. The results indicate that the corrections reduce differences of >10% to near zero. However, the uncertainty estimates for the satellite-derived fAPAR show that it does not meet the requirements given by Global Climate Observing System (GCOS) (≤(10% or 0.05)). The wider implications of the retrieved uncertainties are also presented showing that it is unlikely that the GCOS requirements associated with downstream applications that use satellite fAPAR can be met currently. This work represents an important step forward in the validation of satellitederived fAPAR because it is the first time that the absence of satellite and in situ data uncertainty and traceability, and satellite product definition differences have been addressed. This paves the way for the improvement of satellite fAPAR products because their uncertainties can now be quantified effectively and their validation conducted fairly, meaning there is now a benchmark to base improvements on.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Measuring and modelling fAPAR for satellite product validation
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2023. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL SLASH
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS
URI: https://discovery.ucl.ac.uk/id/eprint/10177920
Downloads since deposit
28Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item