UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Translation of Intravascular Optical Ultrasound Imaging

Little, Callum D.; (2023) Translation of Intravascular Optical Ultrasound Imaging. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Translation_of_Intravascular_Optical_Ultrasound_Imaging.pdf]
Preview
Text
Translation_of_Intravascular_Optical_Ultrasound_Imaging.pdf - Accepted Version

Download (33MB) | Preview

Abstract

ances in the field of intravascular imaging have provided clinicians with power ful tools to aid in the assessment and treatment of vascular pathology. Optical Ultra sound (OpUS) is an emerging modality with the potential to offer significant bene fits over existing commercial technologies such as intravascular ultrasound (IVUS) or optical coherence tomography (OCT). With this paradigm ultrasound (US) is generated using pulsed or modulated light and received by a miniaturised fibre-optic hydrophone (FOH). The US generation is facilitated through the use of engineered optically-absorbing nanocomposite materials. To date pre-clinical benchtop stud ies of OpUS have shown significant promise however further study is needed to facilitate clinical translation. The overall aim of this PhD was to develop a pathway to clinical translation of OpUS, enabled by the development of a catheter-based device capable of high resolution vascular tissue imaging during an in-vivo setting. A forward-viewing OpUS imaging probe was developed using a 400 µm mul timode optical fibre, dip-coated in a multi-walled carbon nanotube-PDMS com posite, paired with a FOH comprising a 125 µm single mode fibre tipped with a Fabry-Perot cavity. With this high US pressures were generated (21.5 MPa at the transducer surface) and broad corresponding bandwidths were achieved (−6 dB of 39.8MHz). Using this probe, OpUS imaging was performed of an ex-vivo human coronary artery. The results demonstrated excellent correspondence, in the detec tion of calcification and lipid infiltration, with IVUS, OCT and histological analysis. A side-viewing OpUS imaging probe, employing a reflective 45 °angle at the dis tal fibre surface, was used to demonstrate rotational B-mode imaging of a vascular structure for the first time. This provided high-resolution imaging (54 µm axial resolution) with deep depth penetration (>10.5 mm). Finally the clinical utility of this technology was demonstrated during an in-vivo endovascular procedure. An OpUS imaging probe, incorporated into an interventional device, allowed guidance of in-situ fenestration of an endograft during a complex abdominal aortic aneurysm repair. Through this work the potential clinical utility of OpUS, to assess pathology and guide vascular intervention, has been demonstrated. These results pave the way for translation of this technology and a first in man study.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Translation of Intravascular Optical Ultrasound Imaging
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2023. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10173706
Downloads since deposit
20Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item