UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Dynamic Scene Reconstruction and Understanding

Wong, Yu-Shiang; (2023) Dynamic Scene Reconstruction and Understanding. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of yushiang_thesis_deposit.pdf]
yushiang_thesis_deposit.pdf - Other

Download (51MB) | Preview


Traditional approaches to 3D reconstruction have achieved remarkable progress in static scene acquisition. The acquired data serves as priors or benchmarks for many vision and graphics tasks, such as object detection and robotic navigation. Thus, obtaining interpretable and editable representations from a raw monocular RGB-D video sequence is an outstanding goal in scene understanding. However, acquiring an interpretable representation becomes significantly more challenging when a scene contains dynamic activities; for example, a moving camera, rigid object movement, and non-rigid motions. These dynamic scene elements introduce a scene factorization problem, i.e., dividing a scene into elements and jointly estimating elements’ motion and geometry. Moreover, the monocular setting brings in the problems of tracking and fusing partially occluded objects as they are scanned from one viewpoint at a time. This thesis explores several ideas for acquiring an interpretable model in dynamic environments. Firstly, we utilize synthetic assets such as floor plans and object meshes to generate dynamic data for training and evaluation. Then, we explore the idea of learning geometry priors with an instance segmentation module, which predicts the location and grouping of indoor objects. We use the learned geometry priors to infer the occluded object geometry for tracking and reconstruction. While instance segmentation modules usually have a generalization issue, i.e., struggling to handle unknown objects, we observed that the empty space information in the background geometry is more reliable for detecting moving objects. Thus, we proposed a segmentation-by-reconstruction strategy for acquiring rigidly-moving objects and backgrounds. Finally, we present a novel neural representation to learn a factorized scene representation, reconstructing every dynamic element. The proposed model supports both rigid and non-rigid motions without pre-trained templates. We demonstrate that our systems and representation improve the reconstruction quality on synthetic test sets and real-world scans.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Dynamic Scene Reconstruction and Understanding
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2023. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10169165
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item