UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Microstructure Imaging in the Human Brain with Advanced Diffusion MRI and Machine Learning

Győri, Noémi G.; (2022) Microstructure Imaging in the Human Brain with Advanced Diffusion MRI and Machine Learning. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of ngg_thesis.pdf]
Preview
Text
ngg_thesis.pdf - Accepted Version

Download (77MB) | Preview

Abstract

Today, a plethora of model-based diffusion MRI (dMRI) techniques exist that aim to provide quantitative metrics of cellular-scale tissue properties. In the brain, many of these techniques focus on cylindrical projections such as axons and dendrites. Capturing additional tissue features is challenging, as conventional dMRI measurements have limited sensitivity to different cellular components, and modelling cellular architecture is not trivial in heterogeneous tissues such as grey matter. Additionally, fitting complex non-linear models with traditional techniques can be time-consuming and prone to local minima, which hampers their widespread use. In this thesis, we harness recent advances in measurement technology and modelling efforts to tackle these challenges. We probe the utility of B-tensor encoding, a technique that offers additional sensitivity to tissue microstructure compared to conventional measurements, and observe that B-tensor encoding provides unique contrast in grey matter. Motivated by this and recent work showing that the diffusion signature of soma in grey matter may be captured with spherical compartments, we use B-tensor encoding measurements and a biophysical model to disentangle spherical and cylindrical cellular structures. We map apparent markers of these geometries in healthy human subjects and evaluate the extent to which they may be interpreted as correlates of soma and projections. To ensure fast and robust model fitting, we use supervised machine learning (ML) to estimate parameters. We explore limitations in ML fitting in several microstructure models, including the model developed here, and demonstrate that the choice of training data significantly impacts estimation performance. We highlight that high precision obtained using ML may mask strong biases and that visual assessment of the parameter maps is not sufficient for evaluating the quality of the estimates. We believe that the methods developed in this work provide new insight into the reliability and potential utility of advanced dMRI and ML in microstructure imaging.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Microstructure Imaging in the Human Brain with Advanced Diffusion MRI and Machine Learning
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2022. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10150911
Downloads since deposit
38Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item