UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Ongoing Exercise Intolerance Following COVID‐19: A Magnetic Resonance–Augmented Cardiopulmonary Exercise Test Study

Brown, James T; Saigal, Anita; Karia, Nina; Patel, Rishi K; Razvi, Yousuf; Constantinou, Natalie; Steeden, Jennifer A; ... Knight, Daniel S; + view all (2022) Ongoing Exercise Intolerance Following COVID‐19: A Magnetic Resonance–Augmented Cardiopulmonary Exercise Test Study. Journal of the American Heart Association , 11 (9) , Article e024207. 10.1161/JAHA.121.024207. Green open access

[thumbnail of Patel_JAHA.121.024207.pdf] Text
Patel_JAHA.121.024207.pdf - Published Version

Download (601kB)

Abstract

Background: Ongoing exercise intolerance of unclear cause following COVID‐19 infection is well recognized but poorly understood. We investigated exercise capacity in patients previously hospitalized with COVID‐19 with and without self‐reported exercise intolerance using magnetic resonance–augmented cardiopulmonary exercise testing. / Methods and Results: Sixty subjects were enrolled in this single‐center prospective observational case‐control study, split into 3 equally sized groups: 2 groups of age‐, sex‐, and comorbidity‐matched previously hospitalized patients following COVID‐19 without clearly identifiable postviral complications and with either self‐reported reduced (COVIDreduced) or fully recovered (COVIDnormal) exercise capacity; a group of age‐ and sex‐matched healthy controls. The COVIDreducedgroup had the lowest peak workload (79W [Interquartile range (IQR), 65–100] versus controls 104W [IQR, 86–148]; P=0.01) and shortest exercise duration (13.3±2.8 minutes versus controls 16.6±3.5 minutes; P=0.008), with no differences in these parameters between COVIDnormal patients and controls. The COVIDreduced group had: (1) the lowest peak indexed oxygen uptake (14.9 mL/minper kg [IQR, 13.1–16.2]) versus controls (22.3 mL/min per kg [IQR, 16.9–27.6]; P=0.003) and COVIDnormal patients (19.1 mL/min per kg [IQR, 15.4–23.7]; P=0.04); (2) the lowest peak indexed cardiac output (4.7±1.2 L/min per m2) versus controls (6.0±1.2 L/min per m2; P=0.004) and COVIDnormal patients (5.7±1.5 L/min per m2; P=0.02), associated with lower indexed stroke volume (SVi:COVIDreduced 39±10 mL/min per m2 versus COVIDnormal 43±7 mL/min per m2 versus controls 48±10 mL/min per m2; P=0.02). There were no differences in peak tissue oxygen extraction or biventricular ejection fractions between groups. There were no associations between COVID‐19 illness severity and peak magnetic resonance–augmented cardiopulmonary exercise testing metrics. Peak indexed oxygen uptake, indexed cardiac output, and indexed stroke volume all correlated with duration from discharge to magnetic resonance–augmented cardiopulmonary exercise testing (P<0.05). / Conclusions: Magnetic resonance–augmented cardiopulmonary exercise testing suggests failure to augment stroke volume as a potential mechanism of exercise intolerance in previously hospitalized patients with COVID‐19. This is unrelated to disease severity and, reassuringly, improves with time from acute illness.

Type: Article
Title: Ongoing Exercise Intolerance Following COVID‐19: A Magnetic Resonance–Augmented Cardiopulmonary Exercise Test Study
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1161/JAHA.121.024207
Publisher version: https://doi.org/10.1161/JAHA.121.024207
Language: English
Additional information: Copyright © 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
Keywords: COVID‐19, cardiopulmonary exercise testing, cardiovascular magnetic resonance imaging, exercise, stroke volume
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Childrens Cardiovascular Disease
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science
URI: https://discovery.ucl.ac.uk/id/eprint/10147807
Downloads since deposit
11Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item