UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Towards BIM/GIS interoperability: A theoretical framework and practical generation of spaces to support infrastructure Asset Management

Boyes, G; (2021) Towards BIM/GIS interoperability: A theoretical framework and practical generation of spaces to support infrastructure Asset Management. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Thesis]
Preview
Text (Thesis)
Boyes_Thesis.pdf

Download (22MB) | Preview
[thumbnail of Appendix] Archive (Appendix)
Boyes_appended_code.zip

Download (153kB)

Abstract

The past ten years have seen the widespread adoption of Building Information Modelling (BIM) among both the Architectural, Engineering and Construction (AEC) and the Asset Management/ Facilities Management (AM/FM) communities. This has been driven by the use of digital information to support collaborative working and a vision for more efficient reuse of data. Within this context, spatial information is either held in a Geographic Information Systems (GIS) or as Computer-Aided Design (CAD) models in a Common Data Environment (CDE). However, these being heterogeneous systems, there are inevitable interoperability issues that result in poor integration. For this thesis, the interoperability challenges were investigated within a case study to ask: Can a better understanding of the conceptual and technical challenges to the integration of BIM and GIS provide improved support for the management of asset information in the context of a major infrastructure project? Within their respective fields, the terms BIM and GIS have acquired a range of accepted meanings, that do not align well with each other. A seven-level socio-technical framework is developed to harmonise concepts in spatial information systems. This framework is used to explore the interoperability gaps that must be resolved to enable design and construction information to be joined up with operational asset information. The Crossrail GIS and BIM systems were used to investigate some of the interoperability challenges that arise during the design, construction and operation of an infrastructure asset. One particular challenge concerns a missing link between AM-based information and CAD-based geometry which hinders engineering assets from being located within the geometric model and preventing geospatial analysis. A process is developed to link these CAD-based elements with AM-based assets using defined 3D spaces to locate assets. However, other interoperability challenges must first be overcome; firstly, the extraction, transformation and loading of geometry from CAD to GIS; secondly, the creation of an explicit representation of each 3D space from the implicit enclosing geometry. This thesis develops an implementation of the watershed transform algorithm to use real-world Crossrail geometry to generate voxelated interior spaces that can then be converted into a B-Rep mesh for use in 3D GIS. The issues faced at the technical level in this case study provide insight into the differences that must also be addressed at the conceptual level. With this in mind, this thesis develops a Spatial Information System Framework to classify the nature of differences between BIM, GIS and other spatial information systems.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Towards BIM/GIS interoperability: A theoretical framework and practical generation of spaces to support infrastructure Asset Management
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Civil, Environ and Geomatic Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10139343
Downloads since deposit
164Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item