UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Automated Software Transplantation

Marginean, A; (2021) Automated Software Transplantation. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Marginean_10137954_thesis_redacted.pdf]
Preview
Text
Marginean_10137954_thesis_redacted.pdf

Download (5MB) | Preview

Abstract

Automated program repair has excited researchers for more than a decade, yet it has yet to find full scale deployment in industry. We report our experience with SAPFIX: the first deployment of automated end-to-end fault fixing, from test case design through to deployed repairs in production code. We have used SAPFIX at Facebook to repair 6 production systems, each consisting of tens of millions of lines of code, and which are collectively used by hundreds of millions of people worldwide. In its first three months of operation, SAPFIX produced 55 repair candidates for 57 crashes reported to SAPFIX, of which 27 have been deem as correct by developers and 14 have been landed into production automatically by SAPFIX. SAPFIX has thus demonstrated the potential of the search-based repair research agenda by deploying, to hundreds of millions of users worldwide, software systems that have been automatically tested and repaired. Automated software transplantation (autotransplantation) is a form of automated software engineering, where we use search based software engineering to be able to automatically move a functionality of interest from a ‘donor‘ program that implements it into a ‘host‘ program that lacks it. Autotransplantation is a kind of automated program repair where we repair the ‘host‘ program by augmenting it with the missing functionality. Automated software transplantation would open many exciting avenues for software development: suppose we could autotransplant code from one system into another, entirely unrelated, system, potentially written in a different programming language. Being able to do so might greatly enhance the software engineering practice, while reducing the costs. Automated software transplantation manifests in two different flavors: monolingual, when the languages of the host and donor programs is the same, or multilingual when the languages differ. This thesis introduces a theory of automated software transplantation, and two algorithms implemented in two tools that achieve this: µSCALPEL for monolingual software transplantation and τSCALPEL for multilingual software transplantation. Leveraging lightweight annotation, program analysis identifies an organ (interesting behavior to transplant); testing validates that the organ exhibits the desired behavior during its extraction and after its implantation into a host. We report encouraging results: in 14 of 17 monolingual transplantation experiments involving 6 donors and 4 hosts, popular real-world systems, we successfully autotransplanted 6 new functionalities; and in 10 out of 10 multlingual transplantation experiments involving 10 donors and 10 hosts, popular real-world systems written in 4 different programming languages, we successfully autotransplanted 10 new functionalities. That is, we have passed all the test suites that validates the new functionalities behaviour and the fact that the initial program behaviour is preserved. Additionally, we have manually checked the behaviour exercised by the organ. Autotransplantation is also very useful: in just 26 hours computation time we successfully autotransplanted the H.264 video encoding functionality from the x264 system to the VLC media player, a task that is currently done manually by the developers of VLC, since 12 years ago. We autotransplanted call graph generation and indentation for C programs into Kate, (a popular KDE based test editor used as an IDE by a lot of C developers) two features currently missing from Kate, but requested by the users of Kate. Autotransplantation is also efficient: the total runtime across 15 monolingual transplants is 5 hours and a half; the total runtime across 10 multilingual transplants is 33 hours.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Automated Software Transplantation
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10137954
Downloads since deposit
452Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item