UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion

Abudhaise, H; Taanman, J-W; DeMuylder, P; Fuller, B; Davidson, BR; (2021) Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion. PLoS One , 16 (10) , Article e0257783. 10.1371/journal.pone.0257783. Green open access

[thumbnail of journal.pone.0257783.pdf]
Preview
Text
journal.pone.0257783.pdf - Published Version

Download (1MB) | Preview

Abstract

INTRODUCTION: Marginal human donor livers are highly susceptible to ischaemia reperfusion injury and mitochondrial dysfunction. Oxygenation during hypothermic machine perfusion (HMP) was proposed to protect the mitochondria but the mechanism is unclear. Additionally, the distribution and uptake of perfusate oxygen during HMP are unknown. This study aimed to examine the feasibility of mitochondrial function analysis during end-ischaemic HMP, assess potential mitochondrial viability biomarkers, and record oxygenation kinetics. METHODS: This was a randomised pilot study using human livers retrieved for transplant but not utilised. Livers (n = 38) were randomised at stage 1 into static cold storage (n = 6), hepatic artery HMP (n = 7), and non-oxygen supplemented portal vein HMP (n = 7) and at stage 2 into oxygen supplemented and non-oxygen supplemented portal vein HMP (n = 11 and 7, respectively). Mitochondrial parameters were compared between the groups and between low- and high-risk marginal livers based on donor history, organ steatosis and preservation period. The oxygen delivery efficiency was assessed in additional 6 livers using real-time measurements of perfusate and parenchymal oxygen. RESULTS: The change in mitochondrial respiratory chain (complex I, II, III, IV) and Krebs cycle enzyme activity (aconitase, citrate synthase) before and after 4-hour preservation was not different between groups in both study stages (p > 0.05). Low-risk livers that could have been used clinically (n = 8) had lower complex II-III activities after 4-hour perfusion, compared with high-risk livers (73 nmol/mg/min vs. 113 nmol/mg/min, p = 0.01). Parenchymal pO2 was consistently lower than perfusate pO2 (p ≤ 0.001), stabilised in 28 minutes compared to 3 minutes in perfusate (p = 0.003), and decreased faster upon oxygen cessation (75 vs. 36 minutes, p = 0.003). CONCLUSIONS: Actively oxygenated and air-equilibrated end-ischaemic HMP did not induce oxidative damage of aconitase, and respiratory chain complexes remained intact. Mitochondria likely respond to variable perfusate oxygen levels by adapting their respiratory function during end-ischaemic HMP. Complex II-III activities should be further investigated as viability biomarkers.

Type: Article
Title: Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pone.0257783
Publisher version: https://doi.org/10.1371/journal.pone.0257783
Language: English
Additional information: © 2021 Abudhaise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Surgical Biotechnology
URI: https://discovery.ucl.ac.uk/id/eprint/10137672
Downloads since deposit
39Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item