Rasha, Lara;
(2021)
Advanced Diagnostic Techniques Applied to Polymer Electrolyte Fuel Cells.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Rasha_Lara_Thesis.pdf - Accepted Version Download (11MB) | Preview |
Abstract
Polymer electrolyte fuel cells (PEFCs) are among the most promising energy conversion technologies for a broad range of applications, offering zero-emission electricity generation by converting hydrogen directly into electrical energy at high efficiencies. Tremendous advancements have been made in terms of performance and durability but technological challenges still exist which hinder their widespread adoption; these challenges range from material durability to system design and operating strategies. Developing this technology requires a comprehensive understanding of its fundamental operation, coupled with effective diagnostic techniques. Performance, temperature and hydration in a PEFC is a complex relationship governed by cause-and-effect, where a change in one factor alters the other. These problems are exacerbated during scale-up, advancing from small lab-scale single cells to large commercial automotive stacks, where operational heterogeneities encourage large current and temperature variations, resulting in varied local degradation rates and inefficient PEFC performance. This study characterises these parameters in-operando by adopting diagnostic techniques such as current, temperature and pressure mapping, coupled with electrochemical techniques, to garner a broader understanding of the formation of these heterogeneities. The development of new diagnostic techniques for both research and industry is also crucial for the commercialisation of PEFCs, as stack-level diagnostic resources are limited. These are required to be straightforward in application and interpretation, cost-effective and with short testing times. Novel diagnostic techniques are presented in this study which aim to bridge this gap in the diagnostic sector. Lock-in thermography is used to image sub-surface water content during cell operation using a thermal imaging camera, producing water distribution images at various penetration depths. A complementary transfer function technique is also developed, termed heat-stimulus thermo-electric impedance spectroscopy (HS-TEIS), which considers the complex relationship between imposed temperature change and electrical response as a function of frequency.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Advanced Diagnostic Techniques Applied to Polymer Electrolyte Fuel Cells |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/10132967 |
Archive Staff Only
View Item |