Ji, Y;
Li, YM;
Seo, JG;
Jang, T;
Knowles, JC;
Song, SH;
Lee, JH;
(2021)
Biological potential of polyethylene glycol (Peg)-functionalized graphene quantum dots in in vitro neural stem/progenitor cells.
Nanomaterials
, 11
(6)
, Article 1446. 10.3390/nano11061446.
Preview |
Text
Nanomaterials 11 6 1446.pdf - Published Version Download (4MB) | Preview |
Abstract
Stem cell therapy is one of the novel and prospective fields. The ability of stem cells to differentiate into different lineages makes them attractive candidates for several therapies. It is essential to understand the cell fate, distribution, and function of transplanted cells in the local microenvironment before their applications. Therefore, it is necessary to develop an accurate and reliable labeling method of stem cells for imaging techniques to track their translocation after transplantation. The graphitic quantum dots (GQDs) are selected among various stem cell labeling and tracking strategies which have high photoluminescence ability, photostability, relatively low cytotoxicity, tunable surface functional groups, and delivering capacity. Since GQDs interact easily with the cell and interfere with cell behavior through surface functional groups, an appropriate surface modification needs to be considered to get close to the ideal labeling nanoprobes. In this study, polyethylene glycol (PEG) is used to improve biocompatibility while simultaneously maintaining the photoluminescent potentials of GQDs. The biochemically inert PEG successfully covered the surface of GQDs. The PEG-GQDs composites show adequate bioimaging capabilities when internalized into neural stem/progenitor cells (NSPCs). Furthermore, the bio-inertness of the PEG-GQDs is confirmed. Herein, we introduce the PEG-GQDs as a valuable tool for stem cell labeling and tracking for biomedical therapies in the field of neural regeneration.
Type: | Article |
---|---|
Title: | Biological potential of polyethylene glycol (Peg)-functionalized graphene quantum dots in in vitro neural stem/progenitor cells |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3390/nano11061446 |
Publisher version: | https://doi.org/10.3390/nano11061446 |
Language: | English |
Additional information: | This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited |
Keywords: | cytotoxicity; polyethylene glycol functionalized-graphene quantum dots (PEG-GQDs); neural stem/progenitor cells (NSPCs); biocompatibility; the visible bio labeling system |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute > Biomaterials and Tissue Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/10129252 |
Archive Staff Only
View Item |