UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Advancing ground-motion modelling methodologies for improved seismic hazard assessment

Huang, Chen; (2021) Advancing ground-motion modelling methodologies for improved seismic hazard assessment. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Dissertation_Final _CH.pdf]
Preview
Text
Dissertation_Final _CH.pdf - Accepted Version

Download (30MB) | Preview

Abstract

This dissertation attempts to advance empirical ground-motion modelling methodologies by considering spatial and cross-intensity measure (IM) correlation properties. Despite the recent advancements in empirical ground-motion models (GMMs), there are some limitations in the current state-of-practice for their development, including (1) statistically inefficient approaches for estimating the model parameters; and (2) the ad hoc consideration of spatial correlation properties rather than an integrated procedure within the model development process. This dissertation addresses these two issues through the statistical proof and numerical implementation of a one-stage estimation algorithm to establish GMMs, considering the spatial correlation component in an explicit and integrated fashion. The proposed algorithm is numerically efficient in estimating model parameters and is extendable to address anisotropy and nonstationary spatial correlation properties. Utilising the proposed algorithm, this dissertation proposes new GMMs with spatial correlation for IMs representing the amplitude, cumulative measures, energy content, and inelastic spectral displacement. The focus is on Italian strong-motion records. The cross-IM correlation models between the considered IMs are also established. The developed GMMs and the obtained correlation properties are scrutinised and compared with the available models in the literature. The differences in terms of model development methodologies and the underlying datasets, which collectively affect the results obtained from the developed GMMs, are critically discussed. Different application cases are finally presented demonstrating the values of the developed methodology and the resulting GMMs for providing accurate ground motion estimates for the purpose of seismic hazard analysis.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Advancing ground-motion modelling methodologies for improved seismic hazard assessment
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Civil, Environ and Geomatic Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10118980
Downloads since deposit
241Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item