UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Automatic analysis of medical images for change detection in prostate cancer

Ghavami, Nooshin; (2020) Automatic analysis of medical images for change detection in prostate cancer. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Final_Thesis.pdf]
Final_Thesis.pdf - Accepted Version

Download (20MB) | Preview


Prostate cancer is the most common cancer and second most common cause of cancer death in men in the UK. However, the patient risk from the cancer can vary considerably, and the widespread use of prostate-specific antigen (PSA) screening has led to over-diagnosis and over-treatment of low-grade tumours. It is therefore important to be able to differentiate high-grade prostate cancer from the slowly- growing, low-grade cancer. Many of these men with low-grade cancer are placed on active surveillance (AS), which involves constant monitoring and intervention for risk reclassification, relying increasingly on magnetic resonance imaging (MRI) to detect disease progression, in addition to TRUS-guided biopsies which are the routine clinical standard method to use. This results in a need for new tools to process these images. For this purpose, it is important to have a good TRUS-MR registration so corresponding anatomy can be located accurately between the two. Automatic segmentation of the prostate gland on both modalities reduces some of the challenges of the registration, such as patient motion, tissue deformation, and the time of the procedure. This thesis focuses on the use of deep learning methods, specifically convolutional neural networks (CNNs), for prostate cancer management. Chapters 4 and 5 investigated the use of CNNs for both TRUS and MRI prostate gland segmentation, and reported high segmentation accuracies for both, Dice Score Coefficients (DSC) of 0.89 for TRUS segmentations and DSCs between 0.84-0.89 for MRI prostate gland segmentation using a range of networks. Chapter 5 also investigated the impact of these segmentation scores on more clinically relevant measures, such as MRI-TRUS registration errors and volume measures, showing that a statistically significant difference in DSCs did not lead to a statistically significant difference in the clinical measures using these segmentations. The potential of these algorithms in commercial and clinical systems are summarised and the use of the MRI prostate gland segmentation in the application of radiological prostate cancer progression prediction for AS patients are investigated and discussed in Chapter 8, which shows statistically significant improvements in accuracy when using spatial priors in the form of prostate segmentations (0.63 ± 0.16 vs. 0.82 ± 0.18 when comparing whole prostate MRI vs. only prostate gland region, respectively).

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Automatic analysis of medical images for change detection in prostate cancer
Event: UCL
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10107388
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item