UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

High energy gamma ray imaging

Doherty, Michael Richard; (1996) High energy gamma ray imaging. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of out.pdf]

Download (25MB) | Preview


This thesis presents a design study into gamma ray collimation techniques for use in high energy radiation imaging devices for the nuclear industry. Such technology is required to provide information on the nature and location of isotopes within nuclear facilities that have reached the end of their useful life. The work has concentrated on the use of two different techniques, namely mechanical collimation using the Anger camera and electronic collimation using a Compton camera. The work has used computational models to evaluate the performance of such systems and thereby suggest optimal design parameters for use in prototype devices. Ray tracing models have been constructed to simulate both parallel hole and tapered bore diverging collimators. Investigations have been carried out to measure the effects on the spatial resolution of changing various design parameters of the collimators. The effects of varying the hole size, septal thickness and collimator length over a range of source to collimator distances likely to be encountered in an industrial scenario have been examined. Some new insight into the nature of the point spread function of mechanical collimators has been gained and the limitations of the conventional analytical approach to collimator evaluation have been highlighted. Modifications to the standard equations used in collimator design have subsequently been suggested. An analytical description of tapered bore collimators has been derived. Monte Carlo models have been developed to model a single scatter Compton camera. Germanium, silicon and sodium iodide have been investigated as candidates for the scattering detector in such a device. A model of a complete ring array Compton camera system has been used to evaluate performance. The data from the Monte Carlo model has been reconstructed to form images. The quality of the images generated have then been compared with images obtained from parallel hole and focusing mechanical collimators.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: High energy gamma ray imaging
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by ProQuest.
Keywords: Pure sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10103398
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item