UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Improving Quantification in Lung PET/CT for the Evaluation of Disease Progression and Treatment Effectiveness

Emond, Elise Claudine; (2020) Improving Quantification in Lung PET/CT for the Evaluation of Disease Progression and Treatment Effectiveness. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of FinalPhdThesis.pdf]
Preview
Text
FinalPhdThesis.pdf - Accepted Version

Download (10MB) | Preview

Abstract

Positron Emission Tomography (PET) allows imaging of functional processes in vivo by measuring the distribution of an administered radiotracer. Whilst one of its main uses is directed towards lung cancer, there is an increased interest in diffuse lung diseases, for which the incidences rise every year, mainly due to environmental reasons and population ageing. However, PET acquisitions in the lung are particularly challenging due to several effects, including the inevitable cardiac and respiratory motion and the loss of spatial resolution due to low density, causing increased positron range. This thesis will focus on Idiopathic Pulmonary Fibrosis (IPF), a disease whose aetiology is poorly understood while patient survival is limited to a few years only. Contrary to lung tumours, this diffuse lung disease modifies the lung architecture more globally. The changes result in small structures with varying densities. Previous work has developed data analysis techniques addressing some of the challenges of imaging patients with IPF. However, robust reconstruction techniques are still necessary to obtain quantitative measures for such data, where it should be beneficial to exploit recent advances in PET scanner hardware such as Time of Flight (TOF) and respiratory motion monitoring. Firstly, positron range in the lung will be discussed, evaluating its effect in density-varying media, such as fibrotic lung. Secondly, the general effect of using incorrect attenuation data in lung PET reconstructions will be assessed. The study will compare TOF and non-TOF reconstructions and quantify the local and global artefacts created by data inconsistencies and respiratory motion. Then, motion compensation will be addressed by proposing a method which takes into account the changes of density and activity in the lungs during the respiration, via the estimation of the volume changes using the deformation fields. The method is evaluated on late time frame PET acquisitions using ¹⁸F-FDG where the radiotracer distribution has stabilised. It is then used as the basis for a method for motion compensation of the early time frames (starting with the administration of the radiotracer), leading to a technique that could be used for motion compensation of kinetic measures. Preliminary results are provided for kinetic parameters extracted from short dynamic data using ¹⁸F-FDG.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Improving Quantification in Lung PET/CT for the Evaluation of Disease Progression and Treatment Effectiveness
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
URI: https://discovery.ucl.ac.uk/id/eprint/10095919
Downloads since deposit
66Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item